print_outputs function

Text output describing the posterior distributions

Text output describing the posterior distributions

The summaries of the posterior distributions in the text form are provided.

print_outputs(Output)

Arguments

  • Output: list, output of the main function estintp().

Returns

Text output summarizing the posterior distributions.

Details

The parameter estimates (sample medians from the empirical posterior distributions) and the 2.5% and 97.5% quantiles from the empirical posterior distributions are printed.

Additionally, during the run of the MCMC chain the significance of the covariates in the list z_beta with respect to the current population of parent points is repeatedly tested. This function prints the medians of the series of p-values obtained in this way, together with the corresponding 2.5% and 97.5% sample quantiles of the p-values for each covariate.

Examples

library(spatstat) # Prepare the dataset: X = trees_N4 x_left = x_left_N4 x_right = x_right_N4 y_bottom = y_bottom_N4 y_top = y_top_N4 z_beta = list(refor = cov_refor, slope = cov_slope) z_alpha = list(tmi = cov_tmi, tdensity = cov_tdensity) z_omega = list(slope = cov_slope, reserv = cov_reserv) # Determine the union of rectangles: W = owin(c(x_left[1], x_right[1]), c(y_bottom[1], y_top[1])) if (length(x_left) >= 2) { for (i in 2:length(x_left)) { W2 = owin(c(x_left[i], x_right[i]), c(y_bottom[i], y_top[i])) W = union.owin(W, W2) } } # Dilated observation window: W_dil = dilation.owin(W, 100) # Default parameters for prior distributions: control = list(NStep = 100, BurnIn = 20, SamplingFreq = 5) # MCMC estimation: Output = estintp(X, control, x_left, x_right, y_bottom, y_top, W_dil, z_beta, z_alpha, z_omega, verbose = FALSE) # Text output print_outputs(Output)