DEPE function

Calculation of the First-Order Derivative of the Explicit Preston Equation

Calculation of the First-Order Derivative of the Explicit Preston Equation

DEPE is used to calculate the first-order derivative of the explicit Preston equation at a given x-value. UTF-8

DEPE(P, x, simpver = NULL)

Arguments

  • P: the parameters of the explicit Preston equation or one of its simplified versions.
  • x: the x-value used in the explicit Preston equation.
  • simpver: an optional argument to use the simplified version of the explicit Preston equation.

Details

When simpver = NULL, the first-order derivative of the explicit Preston equation at a given x-value is selected:

f(x)=b[a4c1+a3(2c21)x+a2(3c32c1)x23ac2x34c3x4]a4a2x2, f(x)=\frac{b\left[a^{4}\,c_{1}+a^{3}\left(2\,c_{2}-1\right)x+a^2\left(3\,c_{3}-2\,c_{1}\right)x^{2}-3\,a\,c_{2}x^3-4\,c_{3}\,x^{4}\right]}{a^4\sqrt{a^2-x^2}},

where P has five parameters: aa, bb, c1c_{1}, c2c_{2}, and c3c_{3}.

\quad When simpver = 1, the first-order derivative of the simplified version 1 is selected:

f(x)=b[a4c1+a3(2c21)x2a2c1x23ac2x3]a4a2x2, f(x)=\frac{b\left[a^{4}\,c_{1}+a^{3}\left(2\,c_{2}-1\right)x-2\,a^2\,c_{1}\,x^{2}-3\,a\,c_{2}x^3\right]}{a^4\sqrt{a^2-x^2}},

where P has four parameters: aa, bb, c1c_{1}, and c2c_{2}.

\quad When simpver = 2, the first-order derivative of the simplified version 2 is selected:

f(x)=b[a4c1a3x2a2c1x2]a4a2x2, f(x)=\frac{b\left[a^{4}\,c_{1}-a^{3}\,x-2\,a^2\,c_{1}\,x^{2}\right]}{a^4\sqrt{a^2-x^2}},

where P has three parameters: aa, bb, and c1c_{1}.

\quad When simpver = 3, the first-order derivative of the simplified version 3 is selected:

f(x)=b[a3(2c21)x3ac2x3]a4a2x2, f(x)=\frac{b\left[a^{3}\left(2\,c_{2}-1\right)x-3\,a\,c_{2}x^3\right]}{a^4\sqrt{a^2-x^2}},

where P has three parameters: aa, bb, and c2c_{2}.

Note

The argument P in the DEPE function has the same parameters, as those in the EPE function.

Author(s)

Peijian Shi pjshi@njfu.edu.cn , Johan Gielis johan.gielis@uantwerpen.be , Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca .

References

Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2023) A simple way to calculate the volume and surface area of avian eggs. Annals of the New York Academy of Sciences 1524, 118-131. tools:::Rd_expr_doi("10.1111/nyas.15000")

See Also

EPE, fitEPE, SurfaceAreaEPE

Examples

Par3 <- c(4.27, 2.90, 0.0868, 0.0224, -0.0287) xx1 <- seq(-4.27, 4.27, by=0.001) f1 <- DEPE(P=Par3, x=xx1, simpver=NULL) f2 <- -DEPE(P=Par3, x=xx1, simpver=NULL) dev.new() plot(xx1, f1, type="l", col=4, cex.lab=1.5, cex.axis=1.5, xlim=c(-5, 5), ylim=c(-35, 35), xlab=expression(italic(x)), ylab=expression(paste(italic(f), "(", italic(x), ")", sep=""))) lines(xx1, f2, col=2) graphics.off()
  • Maintainer: Peijian Shi
  • License: GPL (>= 2)
  • Last published: 2024-03-29

Useful links