DNRGE function

Calculation of the First-Order Derivative of the Narushin-Romanov-Griffin Equation

Calculation of the First-Order Derivative of the Narushin-Romanov-Griffin Equation

DNRGE is used to calculate the first-order derivative of the Narushin-Romanov-Griffin equation at a given x-value. UTF-8

DNRGE(P, x)

Arguments

  • P: the parameters of the Narushin-Romanov-Griffin equation.
  • x: the x-value used in the Narushin-Romanov-Griffin equation.

Details

Let us define:

f1(x)=B2A24x2A2+8Cx+4C2, f_{1}(x) = \frac{B}{2}\sqrt{\frac{A^2-4x^2}{A^2+8Cx+4C^2}}, f2(x)=A(A2+8Cx+4C2)2(A2C)x2+(A2+8AC4C2)x+2AC2+A2C+A3, f_{2}(x) = \sqrt{\frac{A\left(A^{2}+8Cx+4C^{2}\right)}{2(A-2C)x^{2}+\left(A^{2}+8AC-4C^{2}\right)x+2AC^{2}+A^{2}C+A^{3}}}, f3(x)=A24x, f_{3}(x) = A^2 - 4x, f4(x)=A2+8Cx+4C2, f_{4}(x) = A^2+8Cx+4C^2, E=5.5A2+11AC+4C2(3AB2DA2+2AC+4C2)3AB(5.5A2+11AC+4C22A2+2AC+4C2), E = \frac{\sqrt{5.5A^{2}+11AC+4C^{2}} \cdot \left(\sqrt{3}AB-2D\sqrt{A^{2}+2AC+4C^{2}}\right)}{\sqrt{3}AB\left(\sqrt{5.5A^{2}+11AC+4C^{2}}-2\sqrt{A^{2}+2AC+4C^{2}}\right)}, F=2(A2C), F = 2\left(A-2C\right), G=A2+8AC4C2, G = A^{2}+8AC-4C^{2}, H=2AC2+A2C+A3, H = 2AC^{2}+A^{2}C+A^{3},

and then the first-order derivative of the Narushin-Romanov-Griffin equation at a given x-value is:

J(x)=4f1(x)[Cf3(x)+xf4(x)]f3(x)f4(x){1E[1f2(x)]}AE2f1(x)f2(x)f4(x)(2Fx+G)(Fx2+Gx+H)2, J(x) = -\frac{4\,f_{1}(x)\left[C\,f_{3}(x)+x\,f_{4}(x)\right]}{f_{3}(x) \cdot f_{4}(x)}\left\{1-E \cdot \left[1-f_{2}(x)\right]\right\}-\frac{AE}{2}\frac{f_{1}(x)}{f_{2}(x)}\frac{f_{4}(x) \cdot \left(2Fx+G\right)}{\left(Fx^2+Gx+H\right)^2},

where P has four parameters: AA, BB, CC, and DD.

Note

The argument P in the DNRGE function has the same parameters, as those in the NRGE function.

Author(s)

Peijian Shi pjshi@njfu.edu.cn , Johan Gielis johan.gielis@uantwerpen.be , Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca .

References

Narushin, V.G., Romanov, M.N., Griffin, D.K. (2021) Egg and math: introducing a universal formula for egg shape. Annals of the New York Academy of Sciences 1505, 169-177. tools:::Rd_expr_doi("10.1111/nyas.14680")

Narushin, V.G., Romanov, M.N., Mishra, B., Griffin, D.K. (2022) Mathematical progression of avian egg shape with associated area and volume determinations. Annals of the New York Academy of Sciences 1513, 65-78. tools:::Rd_expr_doi("10.1111/nyas.14771")

Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2023) A simple way to calculate the volume and surface area of avian eggs. Annals of the New York Academy of Sciences 1524, 118-131. tools:::Rd_expr_doi("10.1111/nyas.15000")

See Also

fitNRGE, NRGE, SurfaceAreaNRGE

Examples

Par6 <- c(4.51, 3.18, 0.1227, 2.2284) xx3 <- seq(-4.51/2, 4.51/2, len=2000) J1 <- DNRGE(P=Par6, x=xx3) J2 <- -DNRGE(P=Par6, x=xx3) ind <- which(is.na(J1) | is.na(J2)) xx3 <- xx3[-ind] J1 <- J1[-ind] J2 <- J2[-ind] dev.new() plot(xx3, J1, type="l", col=4, cex.lab=1.5, cex.axis=1.5, xlim=c(-4.51/2, 4.51/2), ylim=c(-20, 20), xlab=expression(italic(x)), ylab=expression(paste(italic(J), "(", italic(x), ")", sep=""))) lines(xx3, J2, col=2) graphics.off()
  • Maintainer: Peijian Shi
  • License: GPL (>= 2)
  • Last published: 2024-03-29

Useful links