Calculation of the Polar Radius of the Gielis Curve
Calculation of the Polar Radius of the Gielis Curve
GE is used to calculate polar radii of the original Gielis equation or one of its simplified versions at given polar angles.
UTF-8
GE(P, phi, m =1, simpver =NULL, nval =1)
Arguments
P: the parameters of the original Gielis equation or one of its simplified versions.
phi: the polar angle(s).
m: the given m value that determines the number of angles of the Gielis curve within [0,2π).
simpver: an optional argument to use the simplified version of the original Gielis equation.
nval: the specified value for n1 or n2 or n3 in the simplified versions.
Details
When simpver = NULL, the original Gielis equation is selected:
r(φ)=a(cos(4mφ)n2+k1sin(4mφ)n3)−n11,
where r represents the polar radius at the polar angle φ; m determines the number of angles within [0,2π); and a, k, n1, n2, and n3 need to be provided in P.
When simpver = 1, the simplified version 1 is selected:
r(φ)=a(cos(4mφ)n2+sin(4mφ)n2)−n11,
where a, n1, and n2 need to be provided in P.
When simpver = 2, the simplified version 2 is selected:
r(φ)=a(cos(4mφ)n2+sin(4mφ)n2)−n11,
where a and n1 need to be provided in P, and n2 should be specified in nval.
When simpver = 3, the simplified version 3 is selected:
r(φ)=a(cos(4mφ)n1+sin(4mφ)n1)−n11,
where a needs to be provided in P, and n1
should be specified in nval.
When simpver = 4, the simplified version 4 is selected:
r(φ)=a(cos(4mφ)n1+sin(4mφ)n1)−n11,
where a and n1 need to be provided in P.
When simpver = 5, the simplified version 5 is selected:
r(φ)=a(cos(4mφ)n2+sin(4mφ)n3)−n11,
where a, n1, n2, and n3 need to be provided in P.
When simpver = 6, the simplified version 6 is selected:
r(φ)=a(cos(4mφ)n2+k1sin(4mφ)n2)−n11,
where a, k, n1, and n2 need to be provided in P.
When simpver = 7, the simplified version 7 is selected:
r(φ)=a(cos(4mφ)n2+k1sin(4mφ)n2)−n11,
where a, k, and n1 need to be provided in P, and n2
should be specified in nval.
When simpver = 8, the simplified version 8 is selected:
r(φ)=a(cos(4mφ)n1+k1sin(4mφ)n1)−n11,
where a and k are parameters that need to be provided in P, and n1
should be specified in nval.
When simpver = 9, the simplified version 9 is selected:
r(φ)=a(cos(4mφ)n1+k1sin(4mφ)n1)−n11,
where a, k, and n1 need to be provided in P.
Returns
The polar radii predicted by the original Gielis equation or one of its simplified versions.
Note
simpver here is different from that in the TGE function.
Gielis, J. (2003) A generic geometric transformation that unifies a wide range of natural and abstract shapes. American Journal of Botany 90, 333−338. tools:::Rd_expr_doi("10.3732/ajb.90.3.333")
Li, Y., Quinn, B.K., Gielis, J., Li, Y., Shi, P. (2022) Evidence that supertriangles exist in nature from the vertical projections of Koelreuteria paniculata fruit. Symmetry
Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. Annals of the New York Academy of Sciences 1516, 123−134. tools:::Rd_expr_doi("10.1111/nyas.14862")
Shi, P., Ratkowsky, D.A., Gielis, J. (2020) The generalized Gielis geometric equation and its application. Symmetry 12, 645. tools:::Rd_expr_doi("10.3390/sym12040645")
Shi, P., Xu, Q., Sandhu, H.S., Gielis, J., Ding, Y., Li, H., Dong, X. (2015) Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant. Ecology and Evolution 5, 4578−4589. tools:::Rd_expr_doi("10.1002/ece3.1728")