Modified Lobry-Rosso-Flandrois (LRF) Equation
MLRFE
is used to calculate y values at given x values using the modified LRF equation or one of its simplified versions.
UTF-8
MLRFE(P, x, simpver = 1)
Arguments
P
: the parameters of the modified LRF equation or one of its simplified versions.
x
: the given x values.
simpver
: an optional argument to use the simplified version of the modified LRF equation.
Details
When simpver = NULL
, the modified LRF equation is selected:
\mboxifx∈(xmin, 2xmin+xmax),
y=yopt{(xmax−xopt)[(xmax−xopt)(x−xopt)−(xmin−xopt)(xopt+xmax−2x)](x−xmin)(x−xmax)2}δ;
\mboxifx∈[2xmin+xmax, xmax),
y=yopt{(xopt−xmin)[(xopt−xmin)(x−xopt)−(xopt−xmax)(xopt+xmin−2x)](x−xmax)(x−xmin)2}δ;
\mboxifx∈/(xmin, xmax),
y=0.
Here, x and y represent the independent and dependent variables, respectively; yopt, xopt, xmin, xmax, and δ are constants to be estimated; yopt represents the maximum y, and xopt is the x value associated with the maximum y (i.e., yopt); and xmin and xmax represents the lower and upper intersections between the curve and the x-axis. There are five elements in P
, representing the values of yopt, xopt, xmin, xmax, and δ, respectively.
When simpver = 1
, the simplified version 1 is selected:
\mboxifx∈(0, 2xmax),
y=yopt{(xmax−xopt)[(xmax−xopt)(x−xopt)+xopt(xopt+xmax−2x)]x(x−xmax)2}δ;
\mboxifx∈[2xmax, xmax),
y=yopt{xopt[xopt(x−xopt)−(xopt−xmax)(xopt−2x)](x−xmax)x2}δ;
\mboxifx∈/(0, xmax),
y=0.
There are four elements in P
, representing the values of yopt, xopt, xmax, and δ, respectively.
When simpver = 2
, the simplified version 2 is selected:
\mboxifx∈(xmin, 2xmin+xmax),
y=(xmax−xopt)[(xmax−xopt)(x−xopt)−(xmin−xopt)(xopt+xmax−2x)]yopt(x−xmin)(x−xmax)2;
\mboxifx∈[2xmin+xmax, xmax),
y=(xopt−xmin)[(xopt−xmin)(x−xopt)−(xopt−xmax)(xopt+xmin−2x)]yopt(x−xmax)(x−xmin)2;
\mboxifx∈/(xmin, xmax),
y=0.
There are four elements in P
, representing the values of yopt, xopt, xmin, and xmax, respectively.
When simpver = 3
, the simplified version 3 is selected:
\mboxifx∈(0, 2xmax),
y=(xmax−xopt)[(xmax−xopt)(x−xopt)+xopt(xopt+xmax−2x)]yoptx(x−xmax)2;
\mboxifx∈[2xmax, xmax),
y=xopt[xopt(x−xopt)−(xopt−xmax)(xopt−2x)]yopt(x−xmax)x2;
\mboxifx∈/(0, xmax),
y=0.
There are three elements in P
, representing the values of yopt, xopt, and xmax, respectively.
Returns
The y values predicted by the modified LRF equation or one of its simplified versions.
Note
We have added n parameter δ in the original LRF equation (i.e., simpver = 2
) to increase the flexibility for data fitting.
References
Shi, P., Fan, M., Ratkowsky, D.A., Huang, J., Wu, H., Chen, L., Fang, S., Zhang, C. (2017) Comparison of two ontogenetic growth equations for animals and plants. Ecological Modelling 349, 1−10. tools:::Rd_expr_doi("10.1016/j.ecolmodel.2017.01.012")
Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. Annals of the New York Academy of Sciences 1516, 123−134. tools:::Rd_expr_doi("10.1111/nyas.14862")
Author(s)
Peijian Shi pjshi@njfu.edu.cn , Johan Gielis johan.gielis@uantwerpen.be , Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca .
See Also
areaovate
, curveovate
, fitovate
, fitsigmoid
, MbetaE
, MBriereE
, MPerformanceE
, sigmoid
Examples
x3 <- seq(-5, 15, len=2000)
Par3 <- c(3, 3, 10, 2)
y3 <- MbetaE(P=Par3, x=x3, simpver=1)
dev.new()
plot( x3, y3, cex.lab=1.5, cex.axis=1.5, type="l",
xlab=expression(italic(x)), ylab=expression(italic(y)) )
graphics.off()