SCSE function

Sarabia-Castillo-Slottje Equation (SCSE)

Sarabia-Castillo-Slottje Equation (SCSE)

SCSE is used to calculate yy values at given xx values using the Sarabia-Castillo-Slottje equation. The equation describes the yy coordinates of the Lorenz curve. UTF-8

SCSE(P, x)

Arguments

  • P: the parameters of the Sarabia-Castillo-Slottje equation.
  • x: the given xx values ranging between 0 and 1.

Details

y=xγ[1(1x)α]β. y = x^{\gamma}\left[1-\left(1-x\right)^{\alpha}\right]^{\beta}.

Here, xx and yy represent the independent and dependent variables, respectively; and γ\gamma, α\alpha and β\beta are constants to be estimated, where γ0\gamma \ge 0, 0<α10 < \alpha \le 1, and β1\beta \ge 1. There are three elements in P, representing the values of γ\gamma, α\alpha and β\beta, respectively.

Returns

The yy values predicted by the Sarabia-Castillo-Slottje equation.

Note

The numerical range of xx should range between 0 and 1.

References

Sarabia, J.-M., Castillo, E., Slottje, D.J. (1999) An ordered family of Lorenz curves. Journal of Econometrics. 91, 43-60. tools:::Rd_expr_doi("10.1016/S0304-4076(98)00048-7")

Sitthiyot, T., Holasut, K. (2023) A universal model for the Lorenz curve with novel applications for datasets containing zeros and/or exhibiting extreme inequality. Scientific Reports

13, 4729. tools:::Rd_expr_doi("10.1038/s41598-023-31827-x")

Author(s)

Peijian Shi pjshi@njfu.edu.cn , Johan Gielis johan.gielis@uantwerpen.be , Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca .

See Also

fitLorenz, MPerformanceE, SarabiaE, SHE

Examples

X1 <- seq(0, 1, len=2000) Pa2 <- c(0, 0.790, 1.343) Y2 <- SCSE(P=Pa2, x=X1) dev.new() plot( X1, Y2, cex.lab=1.5, cex.axis=1.5, type="l", asp=1, xaxs="i", yaxs="i", xlim=c(0, 1), ylim=c(0, 1), xlab="Cumulative proportion of the number of infructescences", ylab="Cumulative proportion of the infructescence length" ) graphics.off()
  • Maintainer: Peijian Shi
  • License: GPL (>= 2)
  • Last published: 2024-03-29

Useful links