SHE function

Sitthiyot-Holasut Equation

Sitthiyot-Holasut Equation

SHE is used to calculate yy values at given xx values using the Sitthiyot-Holasut equation. The equation describes the yy coordinates of the Lorenz curve. UTF-8

SHE(P, x)

Arguments

  • P: the parameters of the Sitthiyot-Holasut equation.
  • x: the given xx values ranging between 0 and 1.

Details

\mboxifx>δ, \mbox{if } x > \delta, y=(1ρ)[(2P+1)(xδ1δ)]+ρ[(1ω)(xδ1δ)P+ω{1[1(xδ1δ)]1P}]; y = \left(1-\rho\right)\,\left[\left(\frac{2}{P+1}\right)\left(\frac{x-\delta}{1-\delta}\right)\right] +\rho\,\left[\left(1-\omega\right)\left(\frac{x-\delta}{1-\delta}\right)^{P}+\omega\,\left\{1-\left[1-\left(\frac{x-\delta}{1-\delta}\right)\right]^{\frac{1}{P}}\right\}\right]; \mboxifxδ, \mbox{if } x \le \delta, y=0. y = 0.

Here, xx and yy represent the independent and dependent variables, respectively; and δ\delta, ρ\rho, ω\omega and PP are constants to be estimated, where 0δ<10 \le \delta < 1, 0ρ10 \le \rho \le 1, 0ω10 \le \omega \le 1, and P1P \ge 1. There are four elements in P, representing the values of δ\delta, ρ\rho, ω\omega and PP, respectively.

Returns

The yy values predicted by the Sitthiyot-Holasut equation.

Note

The numerical range of xx should range between 0 and 1. When x<δx < \delta, the xx value is assigned to be δ\delta.

References

Sitthiyot, T., Holasut, K. (2023) A universal model for the Lorenz curve with novel applications for datasets containing zeros and/or exhibiting extreme inequality. Scientific Reports

13, 4729. tools:::Rd_expr_doi("10.1038/s41598-023-31827-x")

Author(s)

Peijian Shi pjshi@njfu.edu.cn , Johan Gielis johan.gielis@uantwerpen.be , Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca .

See Also

fitLorenz, MPerformanceE, SarabiaE, SCSE

Examples

X1 <- seq(0, 1, len=2000) Pa3 <- c(0, 1, 0.446, 1.739) Y3 <- SHE(P=Pa3, x=X1) dev.new() plot( X1, Y3, cex.lab=1.5, cex.axis=1.5, type="l", asp=1, xaxs="i", yaxs="i", xlim=c(0, 1), ylim=c(0, 1), xlab="Cumulative proportion of the number of infructescences", ylab="Cumulative proportion of the infructescence length" ) graphics.off()
  • Maintainer: Peijian Shi
  • License: GPL (>= 2)
  • Last published: 2024-03-29

Useful links