TSE function

The Todd-Smart Equation (TSE)

The Todd-Smart Equation (TSE)

TSE is used to calculate yy values at given xx values using the Todd and Smart's re-expression of Preston's universal egg shape. UTF-8

TSE(P, x, simpver = NULL)

Arguments

  • P: the parameters of the original Todd-Smart equation or one of its simplified versions.
  • x: the given xx values ranging from -1 to 1.
  • simpver: an optional argument to use the simplified version of the original Todd-Smart equation.

Details

When simpver = NULL, the original Preston equation is selected:

y=d0z0+d1z1+d2z2+d3z3, y = d_{0}z_{0} + d_{1}z_{1} + d_{2}z_{2} + d_{3}z_{3},

where

z0=1x2, z_{0}=\sqrt{1-x^2}, z1=x1x2, z_{1}=x\sqrt{1-x^2}, z2=x21x2, z_{2}=x^{2}\sqrt{1-x^2}, z3=x31x2. z_{3}=x^{3}\sqrt{1-x^2}.

Here, xx and yy represent the abscissa and ordinate of an arbitrary point on the Todd-Smart curve; d0d_{0}, d1d_{1}, d2d_{2}, and d3d_{3} are parameters to be estimated.

\quad When simpver = 1, the simplified version 1 is selected:

y=d0z0+d1z1+d2z2, y = d_{0}z_{0} + d_{1}z_{1} + d_{2}z_{2},

where xx and yy represent the abscissa and ordinate of an arbitrary point on the Todd-Smart curve; d0d_{0}, d1d_{1}, and d2d_{2} are parameters to be estimated.

\quad When simpver = 2, the simplified version 2 is selected:

y=d0z0+d1z1, y = d_{0}z_{0} + d_{1}z_{1},

where xx and yy represent the abscissa and ordinate of an arbitrary point on the Todd-Smart curve; d0d_{0}, and d1d_{1} are parameters to be estimated.

\quad When simpver = 3, the simplified version 3 is selected:

y=d0z0+d2z2, y = d_{0}z_{0} + d_{2}z_{2},

where xx and yy represent the abscissa and ordinate of an arbitrary point on the Todd-Smart curve; d0d_{0}, and d2d_{2} are parameters to be estimated.

Returns

The yy values predicted by the Todd-Smart equation.

Note

Here, xx and yy in the Todd-Smart equation are actually equal to y/ay/a

and x/ax/a, respectively, in the Preston equation (See PE for details). Since aa represents half the egg length, this means that the egg length is fixed to be 2, and the maximum egg width is correspondingly adjusted to keep the same scale.

Author(s)

Peijian Shi pjshi@njfu.edu.cn , Johan Gielis johan.gielis@uantwerpen.be , Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca .

References

Biggins, J.D., Montgomeries, R.M., Thompson, J.E., Birkhead, T.R. (2022) Preston's universal formula for avian egg shape. Ornithology

139, ukac028. tools:::Rd_expr_doi("10.1093/ornithology/ukac028")

Biggins, J.D., Thompson, J.E., Birkhead, T.R. (2018) Accurately quantifying the shape of birds' eggs. Ecology and Evolution 8, 9728-9738. tools:::Rd_expr_doi("10.1002/ece3.4412")

Nelder, J.A., Mead, R. (1965). A simplex method for function minimization. Computer Journal 7, 308-313. tools:::Rd_expr_doi("10.1093/comjnl/7.4.308")

Preston, F.W. (1953) The shapes of birds' eggs. The Auk 70, 160-182.

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. Annals of the New York Academy of Sciences 1516, 123-134. tools:::Rd_expr_doi("10.1111/nyas.14862")

Todd, P.H., Smart, I.H.M. (1984) The shape of birds' eggs. Journal of Theoretical Biology

106, 239-243. tools:::Rd_expr_doi("10.1016/0022-5193(84)90021-3")

See Also

lmPE, PE

Examples

Par <- c(0.695320398, -0.210538656, -0.070373518, 0.116839895) xb1 <- seq(-1, 1, len=20000) yb1 <- TSE(P=Par, x=xb1) xb2 <- seq(1, -1, len=20000) yb2 <- -TSE(P=Par, x=xb2) dev.new() plot(xb1, yb1, asp=1, type="l", col=2, ylim=c(-1, 1), cex.lab=1.5, cex.axis=1.5, xlab=expression(italic(x)), ylab=expression(italic(y))) lines(xb2, yb2, col=4) graphics.off()
  • Maintainer: Peijian Shi
  • License: GPL (>= 2)
  • Last published: 2024-03-29

Useful links