create_prior_parameters function

Create the prior parameters.

Create the prior parameters.

Define the priors parameters to be used with ltm_mcmc().

create_prior_parameters(a_mu0 = 0, a_s0 = 0.1, n0 = 6, S0 = 0.06, v0 = 6, V0 = 0.06, m0 = 0, s0 = 1, a0 = 20, b0 = 1.5)

Arguments

  • a_mu0: mean of alpha normal distribution.
  • a_s0: standard deviation of alpha's normal distribution.
  • n0: sig2 inverse gamma shape parameter.
  • S0: sig2 inverse gamma location parameter.
  • v0: sig_eta inverse gamma shape parameter.
  • V0: sig_eta inverse gamma location parameter.
  • m0: mu normal's mean parameter.
  • s0: mu normals standard deviation.
  • a0: a0 beta's shape parameter.
  • b0: a0 beta's location parameter.

Returns

List containing the hyperparameters used to fit the model. The default parameters are the same of the simulation example of the paper.

Details

Considering the following priors:

  • alpha ~ N(mu0, s0)
  • sig2 ~ IG(n0/2, S0/2)
  • sig_eta ~ IG(v0/2, V0/2)
  • mu ~ N(m0, s0^2)
  • (phi+1)/2 ~ Beta(a0, b0)

References

Nakajima, Jouchi, and Mike West. "Bayesian analysis of latent threshold dynamic models." Journal of Business & Economic Statistics 31.2 (2013): 151-164.

  • Maintainer: Julio Trecenti
  • License: MIT + file LICENSE
  • Last published: 2019-07-18