ltm_mcmc(x, y, burnin =2000, iter =8000, K =3, prior_par = create_prior_parameters())
Arguments
x: data points
y: response variable
burnin: number of burnin iterations
iter: number of iterations after burnin
K: parameter K
prior_par: List of parameters for prior distrributions. See create_prior_parameters().
Returns
matrix containing the posterior samples. Each line is one sample after the burnin period and each column is one of the parameters of the model. Columns are named to find the parameters with ease.
Examples
# Generates 10 series, each one with 500 observations and 2 regressors.d_sim <- ltm_sim( ns =500, nk =2, ni =10, vmu = matrix(c(.5,.5), nrow =2), mPhi = diag(2)* c(.99,.99), mSigs = c(.1,.1), dsig =.15, vd = matrix(c(.4,.4), nrow =2), alpha =0)# Fit modelfit_model <- ltm_mcmc(d_sim$mx, d_sim$vy, burnin =0, iter =2)
References
Nakajima, Jouchi, and Mike West. "Bayesian analysis of latent threshold dynamic models." Journal of Business & Economic Statistics 31.2 (2013): 151-164.