bmgarch2.0.0 package

Bayesian Multivariate GARCH Models

as.data.frame.fitted.bmgarch

as.data.frame method for fitted.bmgarch objects.

as.data.frame.forecast.bmgarch

as.data.frame method for forecast.bmgarch objects.

bmgarch-package

The 'bmgarch' package.

bmgarch

Estimate Bayesian Multivariate GARCH

bmgarch_list

Collect bmgarch objects into list.

dot-colQTs

Quantiles within lists

dot-cp

Internal function

dot-f_array_x_mat

Multiply matrices in array with a vector -- generic

dot-f_MA

Multiply matrices in array with a vector

dot-get_stan_summary

Get stan summaries.

dot-newline

Print helper - Return new line(s).

dot-pred_array_to_df

Convert predictive array to data.frame.

dot-print.config

Print helper for Sampling Config.

dot-print.summary.bekk

Print helper for BEKK/pdBEKK.

dot-print.summary.beta

Print helper for beta component.

dot-print.summary.ccc

Print helper for CCC.

dot-print.summary.dcc

Print helper for DCC.

dot-print.summary.lp

Print helper for LP component.

dot-print.summary.means

Print helper for means component.

dot-print.summary.nu

Print helper for nu component.

dot-qtile

Internal function to be used

dot-refit

Refit model

dot-sep

Print helper - Separator, new line

dot-sim.bekk

Simulate BEKK data.

dot-square

Internal function to be used in sweep()

dot-tab

Print helper - tab

fitted.bmgarch

Fitted (backcasting) method for bmgarch objects.

forecast.bmgarch

Forecast method for bmgarch objects.

loo.bmgarch

Leave-Future-Out Cross Validation (LFO-CV)

model_weights

Model weights

plot.bmgarch

Plot method for bmgarch objects.

plot.forecast.bmgarch

Plot method for forecast.bmgarch objects.

print.fitted.bmgarch

Print method for fitted.bmgarch objects.

print.forecast.bmgarch

Print method for forecast.bmgarch objects.

print.loo.bmgarch

print method for lfocv

print.model_weights

Print method for model_weights

print.summary.bmgarch

Print method for bmgarch.summary objects.

standat

Standardize input data to facilitate computation

summary.bmgarch

Summary method for bmgarch objects.

supported_models

Models supported by bmgarch

Fit Bayesian multivariate GARCH models using 'Stan' for full Bayesian inference. Generate (weighted) forecasts for means, variances (volatility) and correlations. Currently DCC(P,Q), CCC(P,Q), pdBEKK(P,Q), and BEKK(P,Q) parameterizations are implemented, based either on a multivariate gaussian normal or student-t distribution. DCC and CCC models are based on Engle (2002) <doi:10.1198/073500102288618487> and Bollerslev (1990). The BEKK parameterization follows Engle and Kroner (1995) <doi:10.1017/S0266466600009063> while the pdBEKK as well as the estimation approach for this package is described in Rast et al. (2020) <doi:10.31234/osf.io/j57pk>. The fitted models contain 'rstan' objects and can be examined with 'rstan' functions.

  • Maintainer: Philippe Rast
  • License: GPL (>= 3)
  • Last published: 2023-09-12