mixgamma function

Mixture of Gamma distribution

Mixture of Gamma distribution

Random generation and density function for a finite mixture of Gamma distribution.

rmixgamma( n = 10, weight = 1, alpha = 1, beta = 1 ) dmixgamma( x, weight = 1, alpha = 1, beta = 1 )

Arguments

  • n: number of observations.
  • x: vector of quantiles.
  • weight: vector of probability weights, with length equal to number of components (kk). This is assumed to sum to 1; if not, it is normalized.
  • alpha: vector of non-negative parameters of the Gamma distribution.
  • beta: vector of non-negative parameters of the Gamma distribution.

Details

Sampling from finite mixture of Gamma distribution, with density:

Pr(xw,α,β)=i=1kwiGamma(xαi,βi), Pr(x|\underline{w}, \underline{\alpha}, \underline{\beta}) = \sum_{i=1}^{k} w_{i} Gamma(x|\alpha_{i}, \beta_{i}),

where

Gamma(xαi,βi)=(βi)αiΓ(αi)xαi1eβix. Gamma(x|\alpha_{i}, \beta_{i})=\frac{(\beta_{i})^{\alpha_{i}}}{\Gamma(\alpha_{i})} x^{\alpha_{i}-1} e^{-\beta_{i}x}.

Returns

Generated data as an vector with size nn.

References

Mohammadi, A., Salehi-Rad, M. R., and Wit, E. C. (2013) Using mixture of Gamma distributions for Bayesian analysis in an M/G/1 queue with optional second service. Computational Statistics, 28(2):683-700, tools:::Rd_expr_doi("10.1007/s00180-012-0323-3")

Mohammadi, A., and Salehi-Rad, M. R. (2012) Bayesian inference and prediction in an M/G/1 with optional second service. Communications in Statistics-Simulation and Computation, 41(3):419-435, tools:::Rd_expr_doi("10.1080/03610918.2011.588358")

Author(s)

Reza Mohammadi a.mohammadi@uva.nl

See Also

rgamma, rmixnorm, rmixt

Examples

## Not run: n = 10000 weight = c( 0.6 , 0.3 , 0.1 ) alpha = c( 100 , 200 , 300 ) beta = c( 100/3, 200/4, 300/5 ) data = rmixgamma( n = n, weight = weight, alpha = alpha, beta = beta ) hist( data, prob = TRUE, nclass = 30, col = "gray" ) x = seq( -20, 20, 0.05 ) densmixgamma = dmixnorm( x, weight, alpha, beta ) lines( x, densmixgamma, lwd = 2 ) ## End(Not run)