diagCI function

Compute values and confidence intervals for sensitivity, specificity, positive likelihood ratio, negative likelihood ratio for a single 2x2 table

Compute values and confidence intervals for sensitivity, specificity, positive likelihood ratio, negative likelihood ratio for a single 2x2 table

diagCI(truePos, totalDzPos, trueNeg, totalDzNeg, calcLRCI = "BayesianLR.test", alpha = 0.05, binomMethod = "wilson", ...)

Arguments

  • truePos: The number of true positive tests.
  • totalDzPos: The total number of positives ("sick") in the population.
  • trueNeg: The number of true negatives in the population.
  • totalDzNeg: The total number of negatives ("well") in the population.
  • calcLRCI: Method to use to calculate the LR CI: "BayesianLR.test" "none" or "analytic"
  • alpha: The alpha for the width of the confidence interval (defaults to alpha = 0.05 for a 95 percent CI)
  • binomMethod: The method to be passed to binom.confint to calculate confidence intervals of proportions (sensitivity, etc.). See help("binom.confint") and the Newcombe article referenced below.
  • ...: Arguments to pass to Bayesian.LRtest.

Returns

A matrix containing sensitivity, specificity, posLR, negLR results and their confidence intervals

Examples

## Not run: diagCI( 25, 50, 45, 75 ) diagCI( truePos = c(25, 30), totalDzPos = c( 50, 55 ), trueNeg = c(5, 35), totalDzNeg = c(60,65) ) ## End(Not run)

References

Deeks JJ, Altman DG. BMJ. 2004 July 17; 329(7458): 168-169. Newcombe RG. Statist Med. 1998; 17(857-872).

  • Maintainer: Ari B. Friedman
  • License: LGPL-2.1
  • Last published: 2019-02-01

Useful links