bpvars1.0 package

Forecasting with Bayesian Panel Vector Autoregressions

bpvars-package

Forecasting with Bayesian Panel Vector Autoregressions

compute_forecast_performance.ForecastsPANELpoos

Computes forecasting performance measures for recursive pseudo-out-of-...

compute_forecast_performance

Computes forecasting performance measures for recursive pseudo-out-of-...

compute_variance_decompositions.PosteriorBVARGROUPPANEL

Computes posterior draws of the forecast error variance decomposition

compute_variance_decompositions.PosteriorBVARPANEL

Computes posterior draws of the forecast error variance decomposition

compute_variance_decompositions.PosteriorBVARs

Computes posterior draws of the forecast error variance decomposition

estimate.BVARGROUPPANEL

Bayesian estimation of a Bayesian Hierarchical Panel Vector Autoregres...

estimate.BVARGROUPPRIORPANEL

Bayesian estimation of a Bayesian Hierarchical Panel Vector Autoregres...

estimate.BVARPANEL

Bayesian estimation of a Bayesian Hierarchical Panel Vector Autoregres...

estimate.BVARs

Bayesian estimation of a Bayesian Hierarchical Vector Autoregressions ...

estimate.PosteriorBVARGROUPPANEL

Bayesian estimation of a Bayesian Hierarchical Panel Vector Autoregres...

estimate.PosteriorBVARGROUPPRIORPANEL

Bayesian estimation of a Bayesian Hierarchical Panel Vector Autoregres...

estimate.PosteriorBVARPANEL

Bayesian estimation of a Bayesian Hierarchical Panel Vector Autoregres...

estimate.PosteriorBVARs

Bayesian estimation of a Bayesian Hierarchical Vector Autoregressions ...

forecast_poos_recursively.BVARGROUPPANEL

Bayesian recursive pseudo-out-of-sample forecasting

forecast_poos_recursively.BVARGROUPPRIORPANEL

Bayesian recursive pseudo-out-of-sample forecasting

forecast_poos_recursively.BVARPANEL

Bayesian recursive pseudo-out-of-sample forecasting

forecast_poos_recursively.BVARs

Bayesian recursive pseudo-out-of-sample forecasting

forecast_poos_recursively

Bayesian recursive pseudo-out-of-sample forecasting

forecast.PosteriorBVARGROUPPANEL

Forecasting using Hierarchical Panel Vector Autoregressions

forecast.PosteriorBVARGROUPPRIORPANEL

Forecasting using Hierarchical Panel Vector Autoregressions

forecast.PosteriorBVARPANEL

Forecasting using Hierarchical Panel Vector Autoregressions

forecast.PosteriorBVARs

Forecasting using Hierarchical Vector Autoregressions for Dynamic Pane...

plot.ForecastsPANEL

Plots fitted values of dependent variables

plot.PosteriorFEVDPANEL

Plots forecast error variance decompositions

reexports

Objects exported from other packages

specify_bvarGroupPANEL

R6 Class representing the specification of the BVARGROUPPANEL model

specify_bvarGroupPriorPANEL

R6 Class representing the specification of the BVARGROUPPRIORPANEL mod...

specify_bvarPANEL

R6 Class representing the specification of the BVARPANEL model

specify_bvars

R6 Class representing the specification of the BVARs model

specify_panel_data_matrices

R6 Class Representing DataMatricesBVARPANEL

specify_poosf_exercise

R6 Class Representing specification of the pseudo-out-of-sample foreca...

specify_posterior_bvarGroupPANEL

R6 Class Representing PosteriorBVARGROUPPANEL

specify_posterior_bvarGroupPriorPANEL

R6 Class Representing PosteriorBVARGROUPPRIORPANEL

specify_posterior_bvarPANEL

R6 Class Representing PosteriorBVARPANEL

specify_posterior_bvars

R6 Class Representing PosteriorBVARs

specify_prior_bvarPANEL

R6 Class Representing PriorBVARPANEL

specify_prior_bvars

R6 Class Representing PriorBVARs

specify_starting_values_bvarGroupPANEL

R6 Class Representing StartingValuesBVARGROUPPANEL

specify_starting_values_bvarGroupPriorPANEL

R6 Class Representing StartingValuesBVARGROUPPRIORPANEL

specify_starting_values_bvarPANEL

R6 Class Representing StartingValuesBVARPANEL

specify_starting_values_bvars

R6 Class Representing StartingValuesBVARs

summary.ForecastsPANEL

Provides posterior summary of country-specific Forecasts

summary.PosteriorBVARGROUPPANEL

Provides posterior estimation summary for Bayesian Hierarchical Panel ...

summary.PosteriorBVARGROUPPRIORPANEL

Provides posterior estimation summary for Bayesian Hierarchical Panel ...

summary.PosteriorBVARPANEL

Provides posterior estimation summary for Bayesian Hierarchical Panel ...

summary.PosteriorBVARs

Provides posterior estimation summary for Bayesian Vector Autoregressi...

summary.PosteriorFEVDPANEL

Provides posterior summary of forecast error variance decompositions

Provides Bayesian estimation and forecasting of dynamic panel data using Bayesian Panel Vector Autoregressions with hierarchical prior distributions. The models include country-specific VARs that share a global prior distribution that extend the model by Jarociński (2010) <doi:10.1002/jae.1082>. Under this prior expected value, each country's system follows a global VAR with country-invariant parameters. Further flexibility is provided by the hierarchical prior structure that retains the Minnesota prior interpretation for the global VAR and features estimated prior covariance matrices, shrinkage, and persistence levels. Bayesian forecasting is developed for models including exogenous variables, allowing conditional forecasts given the future trajectories of some variables and restricted forecasts assuring that rates are forecasted to stay positive and less than 100. The package implements the model specification, estimation, and forecasting routines, facilitating coherent workflows and reproducibility. It also includes automated pseudo-out-of-sample forecasting and computation of forecasting performance measures. Beautiful plots, informative summary functions, and extensive documentation complement all this. An extraordinary computational speed is achieved thanks to employing frontier econometric and numerical techniques and algorithms written in 'C++'. The 'bpvars' package is aligned regarding objects, workflows, and code structure with the 'R' packages 'bsvars' by Woźniak (2024) <doi:10.32614/CRAN.package.bsvars> and 'bsvarSIGNs' by Wang & Woźniak (2025) <doi:10.32614/CRAN.package.bsvarSIGNs>, and they constitute an integrated toolset. Copyright: 2025 International Labour Organization.

  • Maintainer: Tomasz Woźniak
  • License: GPL (>= 3)
  • Last published: 2025-12-11