bm function

Fit a Bayesian model

Fit a Bayesian model

bm(x, ...) ## S3 method for class 'formula' bm( x, data = NULL, n_save = 1000L, n_burn = 500L, options = set_options(), mh = set_mh(), verbose = TRUE, W, X_SLX, type = c("lm", "slx", "sar", "sem", "sdm", "sdem", "sv"), ... ) ## S3 method for class 'bm' bm(x, n_save = 1000L, n_burn = 0L, verbose = TRUE, ...) blm(...) bslx(...) bsar(...) bsem(...) bsdm(...) bsdem(...) bsv(...)

Arguments

  • x: Formula or bm object to sample with.
  • ...: Not used.
  • data: A data.frame containing the variables in the model.
  • n_save, n_burn: Integer scalar. Number of draws for the burn-in period and to store for inference.
  • options: Settings for the prior setup. See set_options.
  • mh: Settings to tune the Metropolis-Hastings step. See set_mh.
  • verbose: Logical scalar. Whether to print status updates.
  • W: Numeric matrix (or function to construct one) with the spatial connectivities.
  • X_SLX: Numeric matrix with explanatory variables that should be lagged spatially.
  • type: Character scalar used to specify the desired model.

Returns

Returns a list with draws from the specified Bayesian model and an object to obtain further samples.

Examples

N <- 100L beta <- 1:5 X <- matrix(rnorm(N * 5), N, 5) y <- X %*% beta + rnorm(N) bm(y ~ X, n_burn = 100, n_draw = 100) # Reproduce the linear model in Kuschnig (2022) blm(log(sales) ~ log(price / cpi) + log(ndi / cpi) + factor(name) + factor(year), data = cigarettes)
  • Maintainer: Nikolas Kuschnig
  • License: GPL-3 | file LICENSE
  • Last published: 2022-02-25

Useful links