compute_variance_decompositions.PosteriorBSVARSV function
Computes posterior draws of the forecast error variance decomposition
Computes posterior draws of the forecast error variance decomposition
Each of the draws from the posterior estimation of the model is transformed into a draw from the posterior distribution of the forecast error variance decomposition. In this heteroskedastic model the forecast error variance decompositions are computed for the forecasts with the origin at the last observation in sample data and using the conditional variance forecasts.
## S3 method for class 'PosteriorBSVARSV'compute_variance_decompositions(posterior, horizon)
Arguments
posterior: posterior estimation outcome - an object of class PosteriorBSVARSV obtained by running the estimate function.
horizon: a positive integer number denoting the forecast horizon for the forecast error variance decomposition computations.
Returns
An object of class PosteriorFEVD, that is, an NxNx(horizon+1)xS array with attribute PosteriorFEVD containing S draws of the forecast error variance decomposition.
Examples
# upload datadata(us_fiscal_lsuw)# specify the model and set seedset.seed(123)specification = specify_bsvar_sv$new(us_fiscal_lsuw, p =1)# run the burn-inburn_in = estimate(specification,10)# estimate the modelposterior = estimate(burn_in,20)# compute forecast error variance decomposition 2 years aheadfevd = compute_variance_decompositions(posterior, horizon =8)# workflow with the pipe |>############################################################set.seed(123)us_fiscal_lsuw |> specify_bsvar_sv$new(p =1)|> estimate(S =10)|> estimate(S =20)|> compute_variance_decompositions(horizon =8)-> fevd
References
Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.