p: a positive integer providing model's autoregressive lag order.
B: a logical NxN matrix containing value TRUE for the elements of the structural matrix B to be estimated and value FALSE for exclusion restrictions to be set to zero.
exogenous: a (T+p)xd matrix of exogenous variables.
stationary: an N logical vector - its element set to FALSE sets the prior mean for the autoregressive parameters of the Nth equation to the white noise process, otherwise to random walk.
Returns
A new complete specification for the homoskedastic bsvar model BSVAR.
Method get_data_matrices()
Returns the data matrices as the DataMatricesBSVAR object.
Usage
specify_bsvar$get_data_matrices()
Examples
data(us_fiscal_lsuw)
spec = specify_bsvar$new(
data = us_fiscal_lsuw,
p = 4
)
spec$get_data_matrices()
Method get_identification()
Returns the identifying restrictions as the IdentificationBSVARs object.
Usage
specify_bsvar$get_identification()
Examples
data(us_fiscal_lsuw)
spec = specify_bsvar$new(
data = us_fiscal_lsuw,
p = 4
)
spec$get_identification()
Method get_prior()
Returns the prior specification as the PriorBSVAR object.
Usage
specify_bsvar$get_prior()
Examples
data(us_fiscal_lsuw)
spec = specify_bsvar$new(
data = us_fiscal_lsuw,
p = 4
)
spec$get_prior()
Method get_starting_values()
Returns the starting values as the StartingValuesBSVAR object.
Usage
specify_bsvar$get_starting_values()
Examples
data(us_fiscal_lsuw)
spec = specify_bsvar$new(
data = us_fiscal_lsuw,
p = 4
)
spec$get_starting_values()
Method clone()
The objects of this class are cloneable with this method.