specify_bsvar function

R6 Class representing the specification of the homoskedastic BSVAR model

R6 Class representing the specification of the homoskedastic BSVAR model

The class BSVAR presents complete specification for the homoskedastic bsvar model.

Examples

data(us_fiscal_lsuw) spec = specify_bsvar$new( data = us_fiscal_lsuw, p = 4 ) ## ------------------------------------------------ ## Method `specify_bsvar$get_data_matrices` ## ------------------------------------------------ data(us_fiscal_lsuw) spec = specify_bsvar$new( data = us_fiscal_lsuw, p = 4 ) spec$get_data_matrices() ## ------------------------------------------------ ## Method `specify_bsvar$get_identification` ## ------------------------------------------------ data(us_fiscal_lsuw) spec = specify_bsvar$new( data = us_fiscal_lsuw, p = 4 ) spec$get_identification() ## ------------------------------------------------ ## Method `specify_bsvar$get_prior` ## ------------------------------------------------ data(us_fiscal_lsuw) spec = specify_bsvar$new( data = us_fiscal_lsuw, p = 4 ) spec$get_prior() ## ------------------------------------------------ ## Method `specify_bsvar$get_starting_values` ## ------------------------------------------------ data(us_fiscal_lsuw) spec = specify_bsvar$new( data = us_fiscal_lsuw, p = 4 ) spec$get_starting_values()

See Also

estimate, specify_posterior_bsvar

Public fields

  • p: a non-negative integer specifying the autoregressive lag order of the model.

  • identification: an object IdentificationBSVAR with the identifying restrictions.

  • prior: an object PriorBSVAR with the prior specification.

  • data_matrices: an object DataMatricesBSVAR with the data matrices.

  • starting_values: an object StartingValuesBSVAR with the starting values.

Methods

Public methods

Method new()

Create a new specification of the homoskedastic bsvar model BSVAR.

Usage

specify_bsvar$new(
  data,
  p = 1L,
  B,
  exogenous = NULL,
  stationary = rep(FALSE, ncol(data))
)

Arguments

  • data: a (T+p)xN matrix with time series data.

  • p: a positive integer providing model's autoregressive lag order.

  • B: a logical NxN matrix containing value TRUE for the elements of the structural matrix BB to be estimated and value FALSE for exclusion restrictions to be set to zero.

  • exogenous: a (T+p)xd matrix of exogenous variables.

  • stationary: an N logical vector - its element set to FALSE sets the prior mean for the autoregressive parameters of the Nth equation to the white noise process, otherwise to random walk.

Returns

A new complete specification for the homoskedastic bsvar model BSVAR.

Method get_data_matrices()

Returns the data matrices as the DataMatricesBSVAR object.

Usage

specify_bsvar$get_data_matrices()

Examples

data(us_fiscal_lsuw)
spec = specify_bsvar$new(
   data = us_fiscal_lsuw,
   p = 4
)
spec$get_data_matrices()

Method get_identification()

Returns the identifying restrictions as the IdentificationBSVARs object.

Usage

specify_bsvar$get_identification()

Examples

data(us_fiscal_lsuw)
spec = specify_bsvar$new(
   data = us_fiscal_lsuw,
   p = 4
)
spec$get_identification()

Method get_prior()

Returns the prior specification as the PriorBSVAR object.

Usage

specify_bsvar$get_prior()

Examples

data(us_fiscal_lsuw)
spec = specify_bsvar$new(
   data = us_fiscal_lsuw,
   p = 4
)
spec$get_prior()

Method get_starting_values()

Returns the starting values as the StartingValuesBSVAR object.

Usage

specify_bsvar$get_starting_values()

Examples

data(us_fiscal_lsuw)
spec = specify_bsvar$new(
   data = us_fiscal_lsuw,
   p = 4
)
spec$get_starting_values()

Method clone()

The objects of this class are cloneable with this method.

Usage

specify_bsvar$clone(deep = FALSE)

Arguments

  • deep: Whether to make a deep clone.

  • Maintainer: Tomasz Woźniak
  • License: GPL (>= 3)
  • Last published: 2024-10-24