specify_identification_bsvars function

R6 Class Representing IdentificationBSVARs

R6 Class Representing IdentificationBSVARs

The class IdentificationBSVARs presents the identifying restrictions for the bsvar models.

Examples

specify_identification_bsvars$new(N = 3) # recursive specification for a 3-variable system B = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE), 3, 3); B specify_identification_bsvars$new(N = 3, B = B) # an alternative identification pattern ## ------------------------------------------------ ## Method `specify_identification_bsvars$get_identification` ## ------------------------------------------------ B = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE), 3, 3); B spec = specify_identification_bsvars$new(N = 3, B = B) spec$get_identification() ## ------------------------------------------------ ## Method `specify_identification_bsvars$set_identification` ## ------------------------------------------------ spec = specify_identification_bsvars$new(N = 3) # specify a model with the default option B = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE), 3, 3); B spec$set_identification(N = 3, B = B) # modify an existing specification spec$get_identification() # check the outcome

Public fields

  • VB: a list of N matrices determining the unrestricted elements of matrix BB.

Methods

Public methods

Method new()

Create new identifying restrictions IdentificationBSVARs.

Usage

specify_identification_bsvars$new(N, B)

Arguments

  • N: a positive integer - the number of dependent variables in the model.

  • B: a logical NxN matrix containing value TRUE for the elements of the structural matrix BB to be estimated and value FALSE for exclusion restrictions to be set to zero.

Returns

Identifying restrictions IdentificationBSVARs.

Method get_identification()

Returns the elements of the identification pattern IdentificationBSVARs as a list.

Usage

specify_identification_bsvars$get_identification()

Examples

B    = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE), 3, 3); B
spec = specify_identification_bsvars$new(N = 3, B = B)
spec$get_identification()

Method set_identification()

Set new starting values StartingValuesBSVAR.

Usage

specify_identification_bsvars$set_identification(N, B)

Arguments

  • N: a positive integer - the number of dependent variables in the model.

  • B: a logical NxN matrix containing value TRUE for the elements of the structural matrix BB to be estimated and value FALSE for exclusion restrictions to be set to zero.

Examples

spec = specify_identification_bsvars$new(N = 3) # specify a model with the default option
B    = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE), 3, 3); B
spec$set_identification(N = 3, B = B)  # modify an existing specification
spec$get_identification()              # check the outcome

Method clone()

The objects of this class are cloneable with this method.

Usage

specify_identification_bsvars$clone(deep = FALSE)

Arguments

  • deep: Whether to make a deep clone.

  • Maintainer: Tomasz Woźniak
  • License: GPL (>= 3)
  • Last published: 2024-10-24