The class IdentificationBSVARs presents the identifying restrictions for the bsvar models.
Examples
specify_identification_bsvars$new(N =3)# recursive specification for a 3-variable systemB = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE),3,3); B
specify_identification_bsvars$new(N =3, B = B)# an alternative identification pattern## ------------------------------------------------## Method `specify_identification_bsvars$get_identification`## ------------------------------------------------B = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE),3,3); B
spec = specify_identification_bsvars$new(N =3, B = B)spec$get_identification()## ------------------------------------------------## Method `specify_identification_bsvars$set_identification`## ------------------------------------------------spec = specify_identification_bsvars$new(N =3)# specify a model with the default optionB = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE),3,3); B
spec$set_identification(N =3, B = B)# modify an existing specificationspec$get_identification()# check the outcome
Public fields
VB: a list of N matrices determining the unrestricted elements of matrix B.
Create new identifying restrictions IdentificationBSVARs.
Usage
specify_identification_bsvars$new(N, B)
Arguments
N: a positive integer - the number of dependent variables in the model.
B: a logical NxN matrix containing value TRUE for the elements of the structural matrix B to be estimated and value FALSE for exclusion restrictions to be set to zero.
Returns
Identifying restrictions IdentificationBSVARs.
Method get_identification()
Returns the elements of the identification pattern IdentificationBSVARs as a list.
B = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE), 3, 3); B
spec = specify_identification_bsvars$new(N = 3, B = B)
spec$get_identification()
Method set_identification()
Set new starting values StartingValuesBSVAR.
Usage
specify_identification_bsvars$set_identification(N, B)
Arguments
N: a positive integer - the number of dependent variables in the model.
B: a logical NxN matrix containing value TRUE for the elements of the structural matrix B to be estimated and value FALSE for exclusion restrictions to be set to zero.
Examples
spec = specify_identification_bsvars$new(N = 3) # specify a model with the default option
B = matrix(c(TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE), 3, 3); B
spec$set_identification(N = 3, B = B) # modify an existing specification
spec$get_identification() # check the outcome
Method clone()
The objects of this class are cloneable with this method.