specify_prior_bsvar_mix function

R6 Class Representing PriorBSVARMIX

R6 Class Representing PriorBSVARMIX

The class PriorBSVARMIX presents a prior specification for the bsvar model with a zero-mean mixture of normals model for structural shocks.

Examples

prior = specify_prior_bsvar_mix$new(N = 3, p = 1, M = 2) # specify the prior prior$A # show autoregressive prior mean

Super classes

bsvars::PriorBSVAR -> bsvars::PriorBSVARMSH -> PriorBSVARMIX

Public fields

  • A: an NxK matrix, the mean of the normal prior distribution for the parameter matrix AA.

  • A_V_inv: a KxK precision matrix of the normal prior distribution for each of the row of the parameter matrix AA. This precision matrix is equation invariant.

  • B_V_inv: an NxN precision matrix of the generalised-normal prior distribution for the structural matrix BB. This precision matrix is equation invariant.

  • B_nu: a positive integer greater of equal than N, a shape parameter of the generalised-normal prior distribution for the structural matrix BB.

  • hyper_nu_B: a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix BB.

  • hyper_a_B: a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix BB.

  • hyper_s_BB: a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix BB.

  • hyper_nu_BB: a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix BB.

  • hyper_nu_A: a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix AA.

  • hyper_a_A: a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix AA.

  • hyper_s_AA: a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix AA.

  • hyper_nu_AA: a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix AA.

  • sigma_nu: a positive scalar, the shape parameter of the inverted-gamma 2 for mixture component-dependent variances of the structural shocks, σn.st2\sigma^2_{n.s_t}.

  • sigma_s: a positive scalar, the scale parameter of the inverted-gamma 2 for mixture component-dependent variances of the structural shocks, σn.st2\sigma^2_{n.s_t}.

  • PR_TR: an MxM matrix, the matrix of hyper-parameters of the row-specific Dirichlet prior distribution for the state probabilities the Markov process sts_t. Its rows must be identical.

Methods

Public methods

Method clone()

The objects of this class are cloneable with this method.

Usage

specify_prior_bsvar_mix$clone(deep = FALSE)

Arguments

  • deep: Whether to make a deep clone.

  • Maintainer: Tomasz Woźniak
  • License: GPL (>= 3)
  • Last published: 2024-10-24