The class PriorBSVARMSH presents a prior specification for the bsvar model with Markov Switching Heteroskedasticity.
Examples
prior = specify_prior_bsvar_msh$new(N =3, p =1, M =2)# specify the priorprior$A # show autoregressive prior mean## ------------------------------------------------## Method `specify_prior_bsvar_msh$get_prior`## ------------------------------------------------# a prior for 3-variable example with four lags and two regimesprior = specify_prior_bsvar_msh$new(N =3, p =4, M =2)prior$get_prior()# show the prior as list
Super class
bsvars::PriorBSVAR -> PriorBSVARMSH
Public fields
A: an NxK matrix, the mean of the normal prior distribution for the parameter matrix A.
A_V_inv: a KxK precision matrix of the normal prior distribution for each of the row of the parameter matrix A. This precision matrix is equation invariant.
B_V_inv: an NxN precision matrix of the generalised-normal prior distribution for the structural matrix B. This precision matrix is equation invariant.
B_nu: a positive integer greater of equal than N, a shape parameter of the generalised-normal prior distribution for the structural matrix B.
hyper_nu_B: a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix B.
hyper_a_B: a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix B.
hyper_s_BB: a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix B.
hyper_nu_BB: a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix B.
hyper_nu_A: a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix A.
hyper_a_A: a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix A.
hyper_s_AA: a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix A.
hyper_nu_AA: a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix A.
sigma_nu: a positive scalar, the shape parameter of the inverted-gamma 2 for MS state-dependent variances of the structural shocks, σn.st2.
sigma_s: a positive scalar, the scale parameter of the inverted-gamma 2 for MS state-dependent variances of the structural shocks, σn.st2.
PR_TR: an MxM matrix, the matrix of hyper-parameters of the row-specific Dirichlet prior distribution for transition probabilities matrix P of the Markov process st.
specify_prior_bsvar_msh$new(N, p, d = 0, M, stationary = rep(FALSE, N))
Arguments
N: a positive integer - the number of dependent variables in the model.
p: a positive integer - the autoregressive lag order of the SVAR model.
d: a positive integer - the number of exogenous variables in the model.
M: an integer greater than 1 - the number of Markov process' heteroskedastic regimes.
stationary: an N logical vector - its element set to FALSE sets the prior mean for the autoregressive parameters of the Nth equation to the white noise process, otherwise to random walk.
Returns
A new prior specification PriorBSVARMSH.
Method get_prior()
Returns the elements of the prior specification PriorBSVARMSH as a list.
Usage
specify_prior_bsvar_msh$get_prior()
Examples
# a prior for 3-variable example with four lags and two regimes
prior = specify_prior_bsvar_msh$new(N = 3, p = 4, M = 2)
prior$get_prior() # show the prior as list
Method clone()
The objects of this class are cloneable with this method.