specify_prior_bsvar_sv function

R6 Class Representing PriorBSVARSV

R6 Class Representing PriorBSVARSV

The class PriorBSVARSV presents a prior specification for the bsvar model with Stochastic Volatility heteroskedasticity.

Examples

prior = specify_prior_bsvar_sv$new(N = 3, p = 1) # a prior for 3-variable example with one lag prior$A # show autoregressive prior mean ## ------------------------------------------------ ## Method `specify_prior_bsvar_sv$get_prior` ## ------------------------------------------------ # a prior for 3-variable example with four lags prior = specify_prior_bsvar_sv$new(N = 3, p = 4) prior$get_prior() # show the prior as list

Super class

bsvars::PriorBSVAR -> PriorBSVARSV

Public fields

  • A: an NxK matrix, the mean of the normal prior distribution for the parameter matrix AA.

  • A_V_inv: a KxK precision matrix of the normal prior distribution for each of the row of the parameter matrix AA. This precision matrix is equation invariant.

  • B_V_inv: an NxN precision matrix of the generalised-normal prior distribution for the structural matrix BB. This precision matrix is equation invariant.

  • B_nu: a positive integer greater of equal than N, a shape parameter of the generalised-normal prior distribution for the structural matrix BB.

  • hyper_nu_B: a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix BB.

  • hyper_a_B: a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix BB.

  • hyper_s_BB: a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix BB.

  • hyper_nu_BB: a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix BB.

  • hyper_nu_A: a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix AA.

  • hyper_a_A: a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix AA.

  • hyper_s_AA: a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix AA.

  • hyper_nu_AA: a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix AA.

  • sv_a_: a positive scalar, the shape parameter of the gamma prior in the hierarchical prior for σω2\sigma^2_{\omega}.

  • sv_s_: a positive scalar, the scale parameter of the gamma prior in the hierarchical prior for σω2\sigma^2_{\omega}.

Methods

Public methods

Method new()

Create a new prior specification PriorBSVARSV.

Usage

specify_prior_bsvar_sv$new(N, p, d = 0, stationary = rep(FALSE, N))

Arguments

  • N: a positive integer - the number of dependent variables in the model.

  • p: a positive integer - the autoregressive lag order of the SVAR model.

  • d: a positive integer - the number of exogenous variables in the model.

  • stationary: an N logical vector - its element set to FALSE sets the prior mean for the autoregressive parameters of the Nth equation to the white noise process, otherwise to random walk.

Returns

A new prior specification PriorBSVARSV.

Method get_prior()

Returns the elements of the prior specification PriorBSVARSV as a list.

Usage

specify_prior_bsvar_sv$get_prior()

Examples

# a prior for 3-variable example with four lags
prior = specify_prior_bsvar_sv$new(N = 3, p = 4)
prior$get_prior() # show the prior as list

Method clone()

The objects of this class are cloneable with this method.

Usage

specify_prior_bsvar_sv$clone(deep = FALSE)

Arguments

  • deep: Whether to make a deep clone.

  • Maintainer: Tomasz Woźniak
  • License: GPL (>= 3)
  • Last published: 2024-10-24