The class PriorBSVART presents a prior specification for the bsvar model with t-distributed structural shocks.
Examples
prior = specify_prior_bsvar_t$new(N =3, p =1)# specify the priorprior$A # show autoregressive prior mean
Super class
bsvars::PriorBSVAR -> PriorBSVART
Public fields
A: an NxK matrix, the mean of the normal prior distribution for the parameter matrix A.
A_V_inv: a KxK precision matrix of the normal prior distribution for each of the row of the parameter matrix A. This precision matrix is equation invariant.
B_V_inv: an NxN precision matrix of the generalised-normal prior distribution for the structural matrix B. This precision matrix is equation invariant.
B_nu: a positive integer greater of equal than N, a shape parameter of the generalised-normal prior distribution for the structural matrix B.
hyper_nu_B: a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix B.
hyper_a_B: a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix B.
hyper_s_BB: a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix B.
hyper_nu_BB: a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix B.
hyper_nu_A: a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix A.
hyper_a_A: a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix A.
hyper_s_AA: a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix A.
hyper_nu_AA: a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix A.