specify_starting_values_bsvar function

R6 Class Representing StartingValuesBSVAR

R6 Class Representing StartingValuesBSVAR

The class StartingValuesBSVAR presents starting values for the homoskedastic bsvar model.

Examples

# starting values for a homoskedastic bsvar for a 3-variable system sv = specify_starting_values_bsvar$new(N = 3, p = 1) ## ------------------------------------------------ ## Method `specify_starting_values_bsvar$new` ## ------------------------------------------------ # starting values for a homoskedastic bsvar with 4 lags for a 3-variable system sv = specify_starting_values_bsvar$new(N = 3, p = 4) ## ------------------------------------------------ ## Method `specify_starting_values_bsvar$get_starting_values` ## ------------------------------------------------ # starting values for a homoskedastic bsvar with 1 lag for a 3-variable system sv = specify_starting_values_bsvar$new(N = 3, p = 1) sv$get_starting_values() # show starting values as list ## ------------------------------------------------ ## Method `specify_starting_values_bsvar$set_starting_values` ## ------------------------------------------------ # starting values for a homoskedastic bsvar with 1 lag for a 3-variable system sv = specify_starting_values_bsvar$new(N = 3, p = 1) # Modify the starting values by: sv_list = sv$get_starting_values() # getting them as list sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry sv$set_starting_values(sv_list) # providing to the class object

Public fields

  • A: an NxK matrix of starting values for the parameter AA.

  • B: an NxN matrix of starting values for the parameter BB.

  • hyper: a (2*N+1)x2 matrix of starting values for the shrinkage hyper-parameters of the hierarchical prior distribution.

Methods

Public methods

Method new()

Create new starting values StartingValuesBSVAR.

Usage

specify_starting_values_bsvar$new(N, p, d = 0)

Arguments

  • N: a positive integer - the number of dependent variables in the model.

  • p: a positive integer - the autoregressive lag order of the SVAR model.

  • d: a positive integer - the number of exogenous variables in the model.

Returns

Starting values StartingValuesBSVAR.

Examples

# starting values for a homoskedastic bsvar with 4 lags for a 3-variable system
sv = specify_starting_values_bsvar$new(N = 3, p = 4)

Method get_starting_values()

Returns the elements of the starting values StartingValuesBSVAR as a list.

Usage

specify_starting_values_bsvar$get_starting_values()

Examples

# starting values for a homoskedastic bsvar with 1 lag for a 3-variable system
sv = specify_starting_values_bsvar$new(N = 3, p = 1)
sv$get_starting_values()   # show starting values as list

Method set_starting_values()

Returns the elements of the starting values StartingValuesBSVAR as a list.

Usage

specify_starting_values_bsvar$set_starting_values(last_draw)

Arguments

  • last_draw: a list containing the last draw of elements B - an NxN matrix, A - an NxK matrix, and hyper - a vector of 5 positive real numbers.

Returns

An object of class StartingValuesBSVAR including the last draw of the current MCMC as the starting value to be passed to the continuation of the MCMC estimation using estimate().

Examples

# starting values for a homoskedastic bsvar with 1 lag for a 3-variable system
sv = specify_starting_values_bsvar$new(N = 3, p = 1)

# Modify the starting values by:
sv_list = sv$get_starting_values()   # getting them as list
sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry
sv$set_starting_values(sv_list)      # providing to the class object

Method clone()

The objects of this class are cloneable with this method.

Usage

specify_starting_values_bsvar$clone(deep = FALSE)

Arguments

  • deep: Whether to make a deep clone.

  • Maintainer: Tomasz Woźniak
  • License: GPL (>= 3)
  • Last published: 2024-10-24