specify_starting_values_bsvar_msh function

R6 Class Representing StartingValuesBSVARMSH

R6 Class Representing StartingValuesBSVARMSH

The class StartingValuesBSVARMSH presents starting values for the bsvar model with Markov Switching Heteroskedasticity.

Examples

# starting values for a bsvar model for a 3-variable system sv = specify_starting_values_bsvar_msh$new(N = 3, p = 1, M = 2, T = 100) ## ------------------------------------------------ ## Method `specify_starting_values_bsvar_msh$get_starting_values` ## ------------------------------------------------ # starting values for a homoskedastic bsvar with 1 lag for a 3-variable system sv = specify_starting_values_bsvar_msh$new(N = 3, p = 1, M = 2, T = 100) sv$get_starting_values() # show starting values as list ## ------------------------------------------------ ## Method `specify_starting_values_bsvar_msh$set_starting_values` ## ------------------------------------------------ # starting values for a bsvar model with 1 lag for a 3-variable system sv = specify_starting_values_bsvar_msh$new(N = 3, p = 1, M = 2, T = 100) # Modify the starting values by: sv_list = sv$get_starting_values() # getting them as list sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry sv$set_starting_values(sv_list) # providing to the class object

Super class

bsvars::StartingValuesBSVAR -> StartingValuesBSVARMSH

Public fields

  • A: an NxK matrix of starting values for the parameter AA.

  • B: an NxN matrix of starting values for the parameter BB.

  • hyper: a (2*N+1)x2 matrix of starting values for the shrinkage hyper-parameters of the hierarchical prior distribution.

  • sigma2: an NxM matrix of starting values for the MS state-specific variances of the structural shocks. Its elements sum to value M over the rows.

  • PR_TR: an MxM matrix of starting values for the transition probability matrix of the Markov process. Its elements sum to 1 over the rows.

  • xi: an MxT matrix of starting values for the Markov process indicator. Its columns are a chosen column of an identity matrix of order M.

  • pi_0: an M-vector of starting values for state probability at time t=0. Its elements sum to 1.

Methods

Public methods

Method new()

Create new starting values StartingValuesBSVAR-MS.

Usage

specify_starting_values_bsvar_msh$new(N, p, M, T, d = 0, finiteM = TRUE)

Arguments

  • N: a positive integer - the number of dependent variables in the model.

  • p: a positive integer - the autoregressive lag order of the SVAR model.

  • M: an integer greater than 1 - the number of Markov process' heteroskedastic regimes.

  • T: a positive integer - the the time series dimension of the dependent variable matrix YY.

  • d: a positive integer - the number of exogenous variables in the model.

  • finiteM: a logical value - if true a stationary Markov switching model is estimated. Otherwise, a sparse Markov switching model is estimated in which M=20 and the number of visited states is estimated.

Returns

Starting values StartingValuesBSVAR-MS.

Method get_starting_values()

Returns the elements of the starting values StartingValuesBSVAR-MS as a list.

Usage

specify_starting_values_bsvar_msh$get_starting_values()

Examples

# starting values for a homoskedastic bsvar with 1 lag for a 3-variable system
sv = specify_starting_values_bsvar_msh$new(N = 3, p = 1, M = 2, T = 100)
sv$get_starting_values()   # show starting values as list

Method set_starting_values()

Returns the elements of the starting values StartingValuesBSVARMSH as a list.

Usage

specify_starting_values_bsvar_msh$set_starting_values(last_draw)

Arguments

  • last_draw: a list containing the last draw.

Returns

An object of class StartingValuesBSVAR-MS including the last draw of the current MCMC as the starting value to be passed to the continuation of the MCMC estimation using estimate().

Examples

# starting values for a bsvar model with 1 lag for a 3-variable system
sv = specify_starting_values_bsvar_msh$new(N = 3, p = 1, M = 2, T = 100)

# Modify the starting values by:
sv_list = sv$get_starting_values()   # getting them as list
sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry
sv$set_starting_values(sv_list)      # providing to the class object

Method clone()

The objects of this class are cloneable with this method.

Usage

specify_starting_values_bsvar_msh$clone(deep = FALSE)

Arguments

  • deep: Whether to make a deep clone.

  • Maintainer: Tomasz Woźniak
  • License: GPL (>= 3)
  • Last published: 2024-10-24