The class StartingValuesBSVARSV presents starting values for the bsvar model with Stochastic Volatility heteroskedasticity.
Examples
# starting values for a bsvar model for a 3-variable systemsv = specify_starting_values_bsvar_sv$new(N =3, p =1, T =100)## ------------------------------------------------## Method `specify_starting_values_bsvar_sv$get_starting_values`## ------------------------------------------------# starting values for a bsvar model with 1 lag for a 3-variable systemsv = specify_starting_values_bsvar_sv$new(N =3, p =1, T =100)sv$get_starting_values()# show starting values as list## ------------------------------------------------## Method `specify_starting_values_bsvar_sv$set_starting_values`## ------------------------------------------------# starting values for a bsvar model with 1 lag for a 3-variable systemsv = specify_starting_values_bsvar_sv$new(N =3, p =1, T =100)# Modify the starting values by:sv_list = sv$get_starting_values()# getting them as listsv_list$A <- matrix(rnorm(12),3,4)# modifying the entrysv$set_starting_values(sv_list)# providing to the class object
# starting values for a bsvar model with 1 lag for a 3-variable system
sv = specify_starting_values_bsvar_sv$new(N = 3, p = 1, T = 100)
sv$get_starting_values() # show starting values as list
Method set_starting_values()
Returns the elements of the starting values StartingValuesBSVAR_SV as a list.
last_draw: a list containing the last draw of the current MCMC run.
Returns
An object of class StartingValuesBSVAR including the last draw of the current MCMC as the starting value to be passed to the continuation of the MCMC estimation using estimate().
Examples
# starting values for a bsvar model with 1 lag for a 3-variable system
sv = specify_starting_values_bsvar_sv$new(N = 3, p = 1, T = 100)
# Modify the starting values by:
sv_list = sv$get_starting_values() # getting them as list
sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry
sv$set_starting_values(sv_list) # providing to the class object
Method clone()
The objects of this class are cloneable with this method.