Verifies identification through heteroskedasticity or non-normality of of structural shocks
Verifies identification through heteroskedasticity or non-normality of of structural shocks
Displays information that the model is homoskedastic and with normal shocks.
## S3 method for class 'PosteriorBSVAR'verify_identification(posterior)
Arguments
posterior: the estimation outcome obtained using estimate function
Returns
Nothing. Just displays a message.
Examples
# simple workflow############################################################# upload datadata(us_fiscal_lsuw)# specify the model and set seedspecification = specify_bsvar$new(us_fiscal_lsuw, p =1)set.seed(123)# estimate the modelposterior = estimate(specification,10)# verify heteroskedasticitysddr = verify_identification(posterior)# workflow with the pipe |>############################################################set.seed(123)us_fiscal_lsuw |> specify_bsvar$new(p =1)|> estimate(S =10)|> verify_identification()-> sddr
References
Lütkepohl, H., and Woźniak, T., (2020) Bayesian Inference for Structural Vector Autoregressions Identified by Markov-Switching Heteroskedasticity. Journal of Economic Dynamics and Control 113 , 103862, tools:::Rd_expr_doi("10.1016/j.jedc.2020.103862") .
Lütkepohl, H., Shang, F., Uzeda, L., and Woźniak, T. (2024) Partial Identification of Heteroskedastic Structural VARs: Theory and Bayesian Inference. University of Melbourne Working Paper, 1--57, tools:::Rd_expr_doi("10.48550/arXiv.2404.11057") .