Calculates the log-likelihood of a multivariate normal distribution.
loglik_normal(u, sigma)
u
: a matrix of residuals.sigma
: a or variance-covariance matrix.The log-likelihood is calculated for each vector in period as
, where .
# Load data data("e1") e1 <- diff(log(e1)) # Generate VAR model data <- gen_var(e1, p = 2, deterministic = "const") y <- t(data$data$Y) x <- t(data$data$Z) # LS estimate ols <- tcrossprod(y, x) %*% solve(tcrossprod(x)) # Residuals u <- y - ols %*% x # Residuals # Covariance matrix sigma <- tcrossprod(u) / ncol(u) # Log-likelihood loglik_normal(u = u, sigma = sigma)