loglik_normal function

Calculates the log-likelihood of a multivariate normal distribution.

Calculates the log-likelihood of a multivariate normal distribution.

loglik_normal(u, sigma)

Arguments

  • u: a K×TK \times T matrix of residuals.
  • sigma: a K×KK \times K or KT×KKT \times K variance-covariance matrix.

Details

The log-likelihood is calculated for each vector in period tt as

K2ln2π12lnΣt12utΣt1ut -\frac{K}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_t| -\frac{1}{2} u_t^\prime \Sigma_t^{-1} u_t

, where ut=ytμtu_t = y_t - \mu_t.

Examples

# Load data data("e1") e1 <- diff(log(e1)) # Generate VAR model data <- gen_var(e1, p = 2, deterministic = "const") y <- t(data$data$Y) x <- t(data$data$Z) # LS estimate ols <- tcrossprod(y, x) %*% solve(tcrossprod(x)) # Residuals u <- y - ols %*% x # Residuals # Covariance matrix sigma <- tcrossprod(u) / ncol(u) # Log-likelihood loglik_normal(u = u, sigma = sigma)
  • Maintainer: Franz X. Mohr
  • License: GPL (>= 2)
  • Last published: 2024-01-08