The bivariate poisson distribution
random generation (rbp
), maximum likelihood estimation (bp
), and log-likelihood. (lik.bp
) for the bivariate Poisson distribution with parameters equal to (m0, m1, m2)
.
lik.bp(xvec, yvec, m0, m1, m2, param = NULL) rbp(n, m0, m1, m2, param = NULL) bp(xvec, yvec, tol = 1e-06)
xvec, yvec
: a pair of bp random vectors. nonnegative integer vectors. If not integers, they will be rounded to the nearest integers.m0, m1, m2
: mean parameters of the Poisson variables. They must be positive.param
: a vector of parameters ((m0, m1, m2)
). Either param
or individual parameters (m0, m1, m2
) need to be provided.n
: number of observations.tol
: tolerance for judging convergence. tol = 1e-8
by default.rbp
gives a pair of random vectors following BP distribution.bp
gives the maximum likelihood estimates of a BP pair.lik.bp
gives the log-likelihood of a set of parameters for a BP pair.# generating a pair of random vectors set.seed(1) data1 <- rbp(n = 20, m0 = 1, m1 = 1, m2 = 1) lik.bp(xvec = data1[, 1], yvec = data1[ ,2], m0 = 1, m1 = 1, m2 = 1) bp(xvec = data1[,1], yvec = data1[,2])
Cho, H., Liu, C., Preisser, J., and Wu, D. (In preparation), "A bivariate zero-inflated negative binomial model for identifying underlying dependence"
Kocherlakota, S. & Kocherlakota, K. (1992). Bivariate Discrete Distributions. New York: Marcel Dekker.
Hunyong Cho, Chuwen Liu, Jinyoung Park, and Di Wu
Useful links