curl function

Numerical and Symbolic Curl

Numerical and Symbolic Curl

Computes the numerical curl of functions or the symbolic curl of characters

in arbitrary orthogonal coordinate systems.

curl( f, var, params = list(), coordinates = "cartesian", accuracy = 4, stepsize = NULL, drop = TRUE ) f %curl% var

Arguments

  • f: array of characters or a function returning a numeric array.
  • var: vector giving the variable names with respect to which the derivatives are to be computed and/or the point where the derivatives are to be evaluated. See derivative.
  • params: list of additional parameters passed to f.
  • coordinates: coordinate system to use. One of: cartesian, polar, spherical, cylindrical, parabolic, parabolic-cylindrical or a vector of scale factors for each varibale.
  • accuracy: degree of accuracy for numerical derivatives.
  • stepsize: finite differences stepsize for numerical derivatives. It is based on the precision of the machine by default.
  • drop: if TRUE, return the curl as a vector and not as an array for vector-valued functions.

Returns

Vector for vector-valued functions when drop=TRUE, array otherwise.

Details

The curl of a vector-valued function FiF_i at a point is represented by a vector whose length and direction denote the magnitude and axis of the maximum circulation. In 2 dimensions, the curl is computed in arbitrary orthogonal coordinate systems using the scale factors hih_i and the Levi-Civita symbol epsilon:

×F=1h1h2ijϵiji(hjFj)=1h1h2(1(h2F2)2(h1F1)) \nabla \times F = \frac{1}{h_1h_2}\sum_{ij}\epsilon_{ij}\partial_i\Bigl(h_jF_j\Bigl)= \frac{1}{h_1h_2}\Biggl(\partial_1\Bigl(h_2F_2\Bigl)-\partial_2\Bigl(h_1F_1\Bigl)\Biggl)

In 3 dimensions:

(×F)k=hkJijϵijki(hjFj) (\nabla \times F)_k = \frac{h_k}{J}\sum_{ij}\epsilon_{ijk}\partial_i\Bigl(h_jF_j\Bigl)

where J=ihiJ=\prod_i h_i. In m+2m+2 dimensions, the curl is implemented in such a way that the formula reduces correctly to the previous cases for m=0m=0 and m=1m=1:

(×F)k1km=hk1hkmJijϵijk1kmi(hjFj) (\nabla \times F)_{k_1\dots k_m} = \frac{h_{k_1}\cdots h_{k_m}}{J}\sum_{ij}\epsilon_{ijk_1\dots k_m}\partial_i\Bigl(h_jF_j\Bigl)

When FF is an array of vector-valued functions Fd1,,dn,jF_{d_1,\dots,d_n,j} the curl

is computed for each vector:

(×F)d1dn,k1km=hk1hkmJijϵijk1kmi(hjFd1dn,j) (\nabla \times F)_{d_1\dots d_n,k_1\dots k_m} = \frac{h_{k_1}\cdots h_{k_m}}{J}\sum_{ij}\epsilon_{ijk_1\dots k_m}\partial_i\Bigl(h_jF_{d_1\dots d_n,j}\Bigl)

Functions

  • f %curl% var: binary operator with default parameters.

Examples

### symbolic curl of a 2-d vector field f <- c("x^3*y^2","x") curl(f, var = c("x","y")) ### numerical curl of a 2-d vector field in (x=1, y=1) f <- function(x,y) c(x^3*y^2, x) curl(f, var = c(x=1, y=1)) ### numerical curl of a 3-d vector field in (x=1, y=1, z=1) f <- function(x,y,z) c(x^3*y^2, x, z) curl(f, var = c(x=1, y=1, z=1)) ### vectorized interface f <- function(x) c(x[1]^3*x[2]^2, x[1], x[3]) curl(f, var = c(1,1,1)) ### symbolic array of vector-valued 3-d functions f <- array(c("x*y","x","y*z","y","x*z","z"), dim = c(2,3)) curl(f, var = c("x","y","z")) ### numeric array of vector-valued 3-d functions in (x=1, y=1, z=1) f <- function(x,y,z) array(c(x*y,x,y*z,y,x*z,z), dim = c(2,3)) curl(f, var = c(x=1, y=1, z=1)) ### binary operator c("x*y","y*z","x*z") %curl% c("x","y","z")

References

Guidotti E (2022). "calculus: High-Dimensional Numerical and Symbolic Calculus in R." Journal of Statistical Software, 104(5), 1-37. tools:::Rd_expr_doi("10.18637/jss.v104.i05")

See Also

Other differential operators: derivative(), divergence(), gradient(), hessian(), jacobian(), laplacian()

  • Maintainer: Emanuele Guidotti
  • License: GPL-3
  • Last published: 2023-03-09