jacobian function

Numerical and Symbolic Jacobian

Numerical and Symbolic Jacobian

Computes the numerical Jacobian of functions or the symbolic Jacobian of characters

in arbitrary orthogonal coordinate systems.

jacobian( f, var, params = list(), coordinates = "cartesian", accuracy = 4, stepsize = NULL ) f %jacobian% var

Arguments

  • f: array of characters or a function returning a numeric array.
  • var: vector giving the variable names with respect to which the derivatives are to be computed and/or the point where the derivatives are to be evaluated. See derivative.
  • params: list of additional parameters passed to f.
  • coordinates: coordinate system to use. One of: cartesian, polar, spherical, cylindrical, parabolic, parabolic-cylindrical or a vector of scale factors for each varibale.
  • accuracy: degree of accuracy for numerical derivatives.
  • stepsize: finite differences stepsize for numerical derivatives. It is based on the precision of the machine by default.

Returns

array.

Details

The function is basically a wrapper for gradient with drop=FALSE.

Functions

  • f %jacobian% var: binary operator with default parameters.

Examples

### symbolic Jacobian jacobian("x*y*z", var = c("x", "y", "z")) ### numerical Jacobian in (x=1, y=2, z=3) f <- function(x, y, z) x*y*z jacobian(f = f, var = c(x=1, y=2, z=3)) ### vectorized interface f <- function(x) x[1]*x[2]*x[3] jacobian(f = f, var = c(1, 2, 3)) ### symbolic vector-valued functions f <- c("y*sin(x)", "x*cos(y)") jacobian(f = f, var = c("x","y")) ### numerical vector-valued functions f <- function(x) c(sum(x), prod(x)) jacobian(f = f, var = c(0,0,0)) ### binary operator "x*y^2" %jacobian% c(x=1, y=3)

References

Guidotti E (2022). "calculus: High-Dimensional Numerical and Symbolic Calculus in R." Journal of Statistical Software, 104(5), 1-37. tools:::Rd_expr_doi("10.18637/jss.v104.i05")

See Also

Other differential operators: curl(), derivative(), divergence(), gradient(), hessian(), laplacian()

  • Maintainer: Emanuele Guidotti
  • License: GPL-3
  • Last published: 2023-03-09