probability function

Probability of Responses to a Question Item or the Left-Cumulative Probability of Responses

Probability of Responses to a Question Item or the Left-Cumulative Probability of Responses

Calculates the probability of specific responses or the left-cumulative probability of responses to item conditioned on a respondent's ability (θ\theta).

probability(catObj, theta, item)

Arguments

  • catObj: An object of class Cat
  • theta: A numeric or an integer indicating the value for θj\theta_j
  • item: An integer indicating the index of the question item

Returns

When the model slot of the catObj is "ltm", the function probability returns a numeric vector of length one representing the probability of observing a non-zero response.

When the model slot of the catObj is "tpm", the function probability returns a numeric vector of length one representing the probability of observing a non-zero response.

When the model slot of the catObj is "grm", the function probability returns a numeric vector of length k+1, where k is the number of possible responses. The first element will always be zero and the (k+1)th element will always be one. The middle elements are the cumulative probability of observing response k or lower.

When the model slot of the catObj is "gpcm", the function probability returns a numeric vector of length k, where k is the number of possible responses. Each number represents the probability of observing response k.

Details

For the ltm model, the probability of non-zero response for respondent jj on item ii is

Pr(yij=1θj)=exp(ai+biθj)1+exp(ai+biθj) Pr(y_{ij}=1|\theta_j)=\frac{\exp(a_i + b_i \theta_j)}{1+\exp(a_i + b_i \theta_j)}

where θj\theta_j is respondent jj 's position on the latent scale of interest, aia_i is item ii 's discrimination parameter, and bib_i is item ii 's difficulty parameter.

For the tpm model, the probability of non-zero response for respondent jj on item ii is

Pr(yij=1θj)=ci+(1ci)exp(ai+biθj)1+exp(ai+biθj) Pr(y_{ij}=1|\theta_j)=c_i+(1-c_i)\frac{\exp(a_i + b_i \theta_j)}{1+\exp(a_i + b_i \theta_j)}

where θj\theta_j is respondent jj 's position on the latent scale of interest, aia_i is item ii 's discrimination parameter, bib_i is item ii 's difficulty parameter, and cic_i is item ii 's guessing parameter.

For the grm model, the probability of a response in category kk or lower for respondent jj on item ii is

Pr(yij<kθj)=exp(αikβiθij)1+exp(αikβiθij)Pr(yij<kθj)=(exp(αikβiθij))/(1+exp(αikβiθij)) Pr(y_{ij} < k|\theta_j)=\frac{\exp(\alpha_{ik} - \beta_i \theta_{ij})}{1+\exp(\alpha_{ik} - \beta_i \theta_{ij})}Pr(y_ij < k | \theta_j) = (exp(\alpha_ik - \beta_i \theta_ij))/(1 + exp(\alpha_ik - \beta_i \theta_ij))

where θj\theta_j is respondent jj 's position on the latent scale of interest, αik\alpha_ik the kk-th element of item ii 's difficulty parameter, βi\beta_i is discrimination parameter vector for item ii. Notice the inequality on the left side and the absence of guessing parameters.

For the gpcm model, the probability of a response in category kk for respondent jj on item ii is

Pr(yij=kθj)=exp(t=1kαi[θj(βiτit)])r=1Kiexp(t=1rαi[θj(βiτit)) Pr(y_{ij} = k|\theta_j)=\frac{\exp(\sum_{t=1}^k \alpha_{i} [\theta_j - (\beta_i - \tau_{it})])}{\sum_{r=1}^{K_i}\exp(\sum_{t=1}^{r} \alpha_{i} [\theta_j - (\beta_i - \tau_{it}) )}

where θj\theta_j is respondent jj 's position on the latent scale of interest, αi\alpha_i is the discrimination parameter for item ii, βi\beta_i is the difficulty parameter for item ii, and τit\tau_{it} is the category tt threshold parameter for item ii, with k=1,...,Kik = 1,...,K_i response options for item ii. For identification purposes τi0=0\tau_{i0} = 0 and t=11αi[θj(βiτit)]=0\sum_{t=1}^1 \alpha_{i} [\theta_j - (\beta_i - \tau_{it})] = 0. Note that when fitting the model, the βi\beta_i and τit\tau_{it} are not distinct, but rather, the difficulty parameters are βit\beta_{it} = βi\beta_{i} - τit\tau_{it}.

Note

This function is to allow users to access the internal functions of the package. During item selection, all calculations are done in compiled C++ code.

Examples

## Loading ltm Cat object ## Probability for Cat object of the ltm model data(ltm_cat) probability(ltm_cat, theta = 1, item = 1) ## Loading tpm Cat object ## Probability for Cat object of the tpm model probability(tpm_cat, theta = 1, item = 1) ## Loading grm Cat object ## Probability for Cat object of the grm model probability(grm_cat, theta = 1, item = 1) ## Loading gpcm Cat object ## Probability for Cat object of the gpcm model probability(gpcm_cat, theta = -3, item = 2)

References

Baker, Frank B. and Seock-Ho Kim. 2004. Item Response Theory: Parameter Estimation Techniques. New York: Marcel Dekker.

Choi, Seung W. and Richard J. Swartz. 2009. ``Comparison of CAT Item Selection Criteria for Polytomous Items." Applied Psychological Measurement 33(6):419-440.

Muraki, Eiji. 1992. ``A generalized partial credit model: Application of an EM algorithm." ETS Research Report Series 1992(1):1-30.

van der Linden, Wim J. 1998. ``Bayesian Item Selection Criteria for Adaptive Testing." Psychometrika 63(2):201-216.

See Also

Cat-class

Author(s)

Haley Acevedo, Ryden Butler, Josh W. Cutler, Matt Malis, Jacob M. Montgomery, Tom Wilkinson, Erin Rossiter, Min Hee Seo, Alex Weil

  • Maintainer: Erin Rossiter
  • License: GPL-3
  • Last published: 2022-12-03

Useful links