simulateFisherInfo function

Calculates Fisher Information under different adaptive battery specifications

Calculates Fisher Information under different adaptive battery specifications

Takes in a a Cat object, a set of respondents, and their corresponding theta values, and calculates the amount of information given an adaptive battery.

simulateFisherInfo(catObjs = list(), theta, responses)

Arguments

  • catObjs: A list of Cat objects of the same class.
  • theta: A vector of numerics representing the true value of theta.
  • responses: A dataframe of answer profiles corresponding to the true values of theta.

Returns

The function simulateFisherInfo returns a dataframe where each Cat object corresponds to a column and each respondent corresponds to a row.

Details

The function takes a Cat object, theta, and response profiles. The user defines the selection type, estimation type, etc. so that the questions can be applied adaptively These adaptive profiles are then used to calculate the total inforamtion gained for a respondent for all answered items, conditioned on theta.

Examples

# Load Cat object data(grm_cat) # Simulate respondents respondents <- plyr::adply(.data = matrix(c(-1, 0, 1)), .margins = 1, .id = NULL, .fun = simulateRespondents, cat = grm_cat, n = 10) # A stopping rule (here, a common one) is required grm_cat@lengthThreshold <- 3 # Specify different adaptive inventory procedures grm_MAP <- grm_EAP <- grm_cat grm_MAP@estimation <- "MAP" grm_EAP@estimation <- "EAP" # List of Cat objects grmList <- list(grm_MAP, grm_EAP) # Results fisher_inf_results <- simulateFisherInfo(catObjs = grmList, theta = rep(c(-1, 0, 1), each = 10), responses = respondents)

See Also

Cat-class, fisherTestInfo, selectItem

Author(s)

Haley Acevedo, Ryden Butler, Josh W. Cutler, Matt Malis, Jacob M. Montgomery, Tom Wilkinson, Erin Rossiter, Min Hee Seo, Alex Weil, Jaerin Kim, Dominique Lockett

  • Maintainer: Erin Rossiter
  • License: GPL-3
  • Last published: 2022-12-03

Useful links