Calculates Fisher Information under different adaptive battery specifications
Calculates Fisher Information under different adaptive battery specifications
Takes in a a Cat object, a set of respondents, and their corresponding theta values, and calculates the amount of information given an adaptive battery.
theta: A vector of numerics representing the true value of theta.
responses: A dataframe of answer profiles corresponding to the true values of theta.
Returns
The function simulateFisherInfo returns a dataframe where each Cat object corresponds to a column and each respondent corresponds to a row.
Details
The function takes a Cat object, theta, and response profiles. The user defines the selection type, estimation type, etc. so that the questions can be applied adaptively These adaptive profiles are then used to calculate the total inforamtion gained for a respondent for all answered items, conditioned on theta.
Examples
# Load Cat objectdata(grm_cat)# Simulate respondentsrespondents <- plyr::adply(.data = matrix(c(-1,0,1)), .margins =1, .id =NULL, .fun = simulateRespondents, cat = grm_cat, n =10)# A stopping rule (here, a common one) is requiredgrm_cat@lengthThreshold <-3# Specify different adaptive inventory proceduresgrm_MAP <- grm_EAP <- grm_cat
grm_MAP@estimation <-"MAP"grm_EAP@estimation <-"EAP"# List of Cat objects grmList <- list(grm_MAP, grm_EAP)# Resultsfisher_inf_results <- simulateFisherInfo(catObjs = grmList, theta = rep(c(-1,0,1), each =10), responses = respondents)
See Also
Cat-class, fisherTestInfo, selectItem
Author(s)
Haley Acevedo, Ryden Butler, Josh W. Cutler, Matt Malis, Jacob M. Montgomery, Tom Wilkinson, Erin Rossiter, Min Hee Seo, Alex Weil, Jaerin Kim, Dominique Lockett