Estimates theta under different adaptive battery specifications
Estimates theta under different adaptive battery specifications
Takes in response profiles from multiple respondents and multiple Cat object (i.e., adaptive battery) specifications and returns a set of theta estimates
catObjs: A list of Cat objects of the same model with different adaptive battery specifications
responses: A matrix of response profiles
return_adaptive: Boolean indicating if user wants dataframe containing only answers chosen via the adaptive design for each Cat object in catObjs list.
Returns
The function simulateThetas returns a dataframe where each Cat object corresponds to a column and each respondent corresponds to a row if return_adaptive is FALSE, the default. Optionally, simulateThetas returns a list containing that dataframe plus dataframes for the answer profiles simulated via each adaptive design if return_adaptive is TRUE.
Details
The function takes multiple Cat objects, stored in a list, and generates an estimation for theta.
Examples
# Load Cat objectdata(grm_cat)# Simulate respondentsrespondents <- plyr::adply(.data = matrix(c(-1,0,1)), .margins =1, .id =NULL, .fun = simulateRespondents, cat = grm_cat, n =10)# A stopping rule (here, a common one) is requiredgrm_cat@lengthThreshold <-3# Specify different adaptive inventory proceduresgrm_MAP <- grm_EAP <- grm_cat
grm_MAP@estimation <-"MAP"grm_EAP@estimation <-"EAP"# List of Cat objects grmList <- list(cat1 = grm_MAP, cat2 = grm_EAP)# Resultstheta_est_results <- simulateThetas(catObjs = grmList, responses = respondents)
See Also
Cat-class, apply, selectItem
Author(s)
Haley Acevedo, Ryden Butler, Josh W. Cutler, Matt Malis, Jacob M. Montgomery, Tom Wilkinson, Erin Rossiter, Min Hee Seo, Alex Weil, Jaerin Kim, Dominique Lockett