profile.cauphyfit function

Method for Profiling cauphyfit Objects

Method for Profiling cauphyfit Objects

Investigates the profile log-likelihood function for a fitted model of class cauphyfit.

## S3 method for class 'cauphyfit' profile(fitted, which = 1:npar, level = 0.8, npoints = 100, ...)

Arguments

  • fitted: the cauphyfit fitted model object.
  • which: the original model parameters which should be profiled. This can be a numeric or character vector. By default, all parameters are profiled.
  • level: highest confidence level for parameters intervals, computed using the approximated Hessian (see compute_vcov).
  • npoints: number of points to profile the likelihood for each parameter.
  • ...: further arguments passed to or from other methods.

Returns

An object of class profile.cauphyfit, which is a list with an element for each parameter being profiled. The elements are data-frames with two variables:

  • par.vals:: a matrix of parameter values for each fitted model.
  • profLogLik:: the profile log likelihood.

Details

This function computes a confidence interval for the parameters using confint.cauphyfit, and then computes the likelihood function on a grid with npoints values evenly spaced between the bounds of the interval, for each parameter one by one, all other parameters being fixed.

Examples

phy <- ape::rphylo(5, 0.1, 0) dat <- rTraitCauchy(n = 1, phy = phy, model = "cauchy", parameters = list(root.value = 0, disp = 1)) fit <- fitCauchy(phy, dat, model = "cauchy", method = "reml") pr <- profile(fit) plot(pr)

See Also

fitCauchy, plot.profile.cauphyfit, profile.

  • Maintainer: Paul Bastide
  • License: GPL (>= 3)
  • Last published: 2024-10-01