## S3 method for class 'cauphyfit'print(x, digits = max(3, getOption("digits")-3),...)## S3 method for class 'cauphyfit'vcov(object,...)## S3 method for class 'cauphyfit'logLik(object,...)## S3 method for class 'logLik.cauphyfit'AIC(object, k =2,...)## S3 method for class 'cauphyfit'AIC(object, k =2,...)## S3 method for class 'cauphyfit'confint(object, parm, level =0.95,...)## S3 method for class 'cauphyfit'coef(object,...)
Arguments
x: an object of class "phylolm".
digits: number of digits to show in summary method.
...: further arguments to methods.
object: an object of class cauphyfit.
k: numeric, the penalty per parameter to be used; the default k = 2 is the classical AIC.
parm: a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
level: the confidence level required.
Returns
Same value as the associated methods from the stats package:
vcov: an estimated covariance matrix, see compute_vcov;
logLik: an object of class logLik;
AIC: a numeric value;
confint: a matrix (or vector) with columns giving lower and upper confidence limits for each parameter;
coef: coefficients extracted from the model;
Examples
# Simulate tree and dataset.seed(1289)phy <- ape::rphylo(20,0.1,0)dat <- rTraitCauchy(n =1, phy = phy, model ="cauchy", parameters = list(root.value =10, disp =0.1))# Fit the datafit <- fitCauchy(phy, dat, model ="cauchy", method ="reml")fit
# vcov matrixvcov(fit)# Approximate confidence intervalsconfint(fit)# log likelihood of the fitted objectlogLik(fit)# AIC of the fitted objectAIC(fit)# coefficientscoef(fit)