## S3 method for class 'cauphylm'print(x, digits = max(3, getOption("digits")-3),...)## S3 method for class 'cauphylm'vcov(object,...)## S3 method for class 'cauphylm'logLik(object,...)## S3 method for class 'logLik.cauphylm'AIC(object, k =2,...)## S3 method for class 'cauphylm'AIC(object, k =2,...)## S3 method for class 'cauphylm'predict(object, newdata =NULL, se.fit =FALSE,...)## S3 method for class 'cauphylm'confint(object, parm, level =0.95,...)## S3 method for class 'cauphylm'coef(object,...)
Arguments
x: an object of class "phylolm".
digits: number of digits to show in summary method.
...: further arguments to methods.
object: an object of class cauphylm.
k: numeric, the penalty per parameter to be used; the default k = 2 is the classical AIC.
newdata: an optional data frame to provide the predictor values at which predictions should be made. If omitted, the fitted values are used. Currently, predictions are made for new species whose placement in the tree is unknown. Only their covariate information is used. The prediction for the trend model is not currently implemented.
se.fit: A switch indicating if standard errors are required.
parm: a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
level: the confidence level required.
Returns
Same value as the associated methods from the stats package:
vcov: an estimated covariance matrix, see compute_vcov;
logLik: an object of class logLik;
AIC: a numeric value;
confint: a matrix (or vector) with columns giving lower and upper confidence limits for each parameter;
coef: coefficients extracted from the model;
predict: a vector of predicted values.
Examples
# Simulate tree and dataset.seed(1289)phy <- ape::rphylo(20,0.1,0)error <- rTraitCauchy(n =1, phy = phy, model ="cauchy", parameters = list(root.value =0, disp =0.1))x1 <- ape::rTraitCont(phy, model ="BM", sigma =0.1, root.value =0)trait <-3+2*x1 + error
# Fit the datafit <- cauphylm(trait ~ x1, phy = phy)fit
# vcov matrixvcov(fit)# Approximate confidence intervalsconfint(fit)# log likelihood of the fitted objectlogLik(fit)# AIC of the fitted objectAIC(fit)# predicted valuespredict(fit)# coefficientscoef(fit)