A: An observed n * n adjacency matrix of undirected graph.
R: Int, the relatively large dimension of embedding vectors given in advance.
K.max0: The relatively large upper bound of the number of communities given in advance to generate initial values of B.
rand.seed: The random seed of generating initial value.
lambda3: A float value, the tuning parameter for sparsity of Z.
a: A float value, regularization parameter in MCP, the default setting is 3.
kappa: A float value, the penalty parameter in ADMM algorithm, the default setting is 1.
alpha: A float value, the step size of coordinate descent algorithm updating Z, the default setting is 1.
eps: A float value, algorithm termination threshold.
niter: Int, maximum number of cycles of the overall ADMM algorithm.
niter.Z: Int, maximum number of cycles of coordinate descent algorithm updating Z.
Returns
A list including all estimated parameters and the BIC values with all choices of given tuning parameters, and the selected optional parameters. Opt_Z: A n * r matrix, the estimated embedding vectors corresponding to n nodes; Opt_B: A n * r matrix, the estimated community centers corresponding to n nodes; Opt_K: Int, the estimated number of communities; Opt_member: A n-dimensional vector, describing the membership of n nodes; Opt_cluster.matrix: A n * n membership matrix, whose (i,j)-element is 1, if nodes i and j belong to the same community, and 0, otherwise.