A: An observed n * n adjacency matrix of undirected graph.
sample.index.n: A 3 * (n*(n-1)/2) matrix, all pairs of integers from 1 to n.
lambda: A list, the sequences of the tuning parameters (λ1, λ2, and λ3).
Z.int: A n * r matrix, the initial values of embedding vectors corresponding to n nodes.
B.int: A n * r matrix, the initial values of community centers corresponding to n nodes.
a: A float value, regularization parameter in MCP, the default setting is 3.
kappa: A float value, the penalty parameter in ADMM algorithm, the default setting is 1.
alpha: A float value, the step size of coordinate descent algorithm updating Z, the default setting is 1.
eps: A float value, algorithm termination threshold.
niter: Int, maximum number of cycles of the overall ADMM algorithm.
niter.Z: Int, maximum number of cycles of coordinate descent algorithm updating Z.
update.B: The optimization algorithm updating B, which can be selected "ADMM" (default) and "AMA".
local.oppro: The logical variable, whether to use local approximations when updating Z, the default setting is F.
merge.all: Whether to merge pairs of nodes indirectly connected (but without the direct edge) in the estimated community membership matrix.
ad.BIC: Whether to use the adjusted BIC, the default setting is F.
Fully.Connected: Whether to use the all pairs (i,j) in fusion penalty, the default setting is T. If F, the pairs (i,j) in fusion penalty will be determined by the observed n * n adjacency matrix A.
trace: Whether to output the intermediate process of the algorithm.
line.search: Linear search or not, the default setting is T.
ad.BIC.B: Whether the BIC criterion contains terms involving the B matrix, the default setting is F.
Returns
A list including all estimated parameters and the BIC values with all choices of given tuning parameters, and the selected optional parameters. Opt_Z: A n * r matrix, the estimated embedding vectors corresponding to n nodes; Opt_B: A n * r matrix, the estimated community centers corresponding to n nodes; Opt_K: Int, the estimated number of communities; Opt_member: A n-dimensional vector, describing the membership of n nodes; Opt_cluster.matrix: A n * n membership matrix, whose (i,j)-element is 1, if nodes i and j belong to the same community, and 0, otherwise.
Examples
library(cencrne)data(example.data)A = example.data$A
K.true = example.data$K.true
Z.true = example.data$Z.true
B.true = example.data$B.true
P.true = example.data$P.true
Theta.true = example.data$Theta.true
cluster.matrix.true = example.data$cluster.matrix.true
n = dim(A)[1]lam.max =3lam.min =0.5lam1.s =2/log(n)lam2.s = sqrt(8*log(n)/n)lam3.s =1/8/log(n)/sqrt(n)lambda = genelambda.obo(nlambda1=3,lambda1_max=lam.max*lam1.s,lambda1_min=lam.min*lam1.s, nlambda2=10,lambda2_max=lam.max*lam2.s,lambda2_min=lam.min*lam2.s, nlambda3=1,lambda3_max=lam.max*lam3.s,lambda3_min=lam.min*lam3.s)sample.index.n = rbind(combn(n,2),1:(n*(n-1)/2))int.list = gen.int(A)Z.int = int.list$Z.int
B.int = int.list$B.int
res = network.comm.num(A, sample.index.n, lambda, Z.int, B.int)K.hat = res$Opt_K # the estimated number of communitiesZ.hat = res$Opt_Z # the estimated embedding vectors corresponding to n nodescluster.matrix.hat = res$Opt_cluster.matrix # the n * n estimated membership matrixevaluation(Z.hat, Z.true, cluster.matrix.hat, cluster.matrix.true, P.true, Theta.true, K.hat, K.true)
References
Ren, M., Zhang S. and Wang J. (2022). Consistent Estimation of the Number of Communities via Regularized Network Embedding.