SEPARATON INFORMATION MATRIX
Separation information matrix containing the nearest neighbor and farthest neighbor of each cluster.
nearestNeighborSepVal(sepValMat)
sepValMat
: a K
by K
matrix, where K
is the number of clusters. sepValMat[i,j]
is the separation index between cluster i
and j
.This function returns a separation information matrix containing K
rows and the following six columns, where K
is the number of clusters.
Column 1:: Labels of clusters (), where is the number of clusters for the data set.
Column 2:: Labels of the corresponding nearest neighbors.
Column 3:: Separation indices of the clusters to their nearest neighboring clusters.
Column 4:: Labels of the corresponding farthest neighboring clusters.
Column 5:: Separation indices of the clusters to their farthest neighbors.
Column 6:: Median separation indices of the clusters to their neighbors.
Qiu, W.-L. and Joe, H. (2006a) Generation of Random Clusters with Specified Degree of Separaion. Journal of Classification, 23 (2), 315-334.
Qiu, W.-L. and Joe, H. (2006b) Separation Index and Partial Membership for Clustering. Computational Statistics and Data Analysis, 50 , 585--603.
Weiliang Qiu weiliang.qiu@gmail.com
Harry Joe harry@stat.ubc.ca
n1 <- 50 mu1 <- c(0, 0) Sigma1 <- matrix(c(2, 1, 1, 5), 2, 2) n2 <- 100 mu2 <- c(10, 0) Sigma2 <- matrix(c(5, -1, -1, 2), 2, 2) n3 <- 30 mu3 <- c(10, 10) Sigma3 <- matrix(c(3, 1.5, 1.5, 1), 2, 2) projDir <- c(1, 0) muMat <- rbind(mu1, mu2, mu3) SigmaArray <- array(0, c(2, 2, 3)) SigmaArray[, , 1] <- Sigma1 SigmaArray[, , 2] <- Sigma2 SigmaArray[, , 3] <- Sigma3 tmp <- getSepProjTheory( muMat = muMat, SigmaArray = SigmaArray, iniProjDirMethod="SL") sepValMat <- tmp$sepValMat nearestNeighborSepVal(sepValMat = sepValMat)
Useful links