viewClusters function

PLOT ALL CLUSTERS IN A 2-D PROJECTION SPACE

PLOT ALL CLUSTERS IN A 2-D PROJECTION SPACE

Plot all clusters in a 2-D projection space.

viewClusters( y, cl, outlierLabel = 0, projMethod = "Eigen", xlim = NULL, ylim = NULL, xlab = "1st projection direction", ylab = "2nd projection direction", title = "Scatter plot of 2-D Projected Clusters", font = 2, font.lab = 2, cex = 1.2, cex.lab = 1.2)

Arguments

  • y: Data matrix. Rows correspond to observations. Columns correspond to variables.
  • cl: Cluster membership vector.
  • outlierLabel: Label for outliers. Outliers are not involved in calculating the projection directions. Outliers will be represented by red triangles in the plot. By default, outlierLabel=0.
  • projMethod: Method to construct 2-D projection directions. projMethod="Eigen" indicates that we project data to the 2-dimensional space spanned by the first two eigenvectors of the between cluster distance matrix c("B={2\\over k_0}\\sum_{i=1}^{k_0}\\Sigma_i+{2\\over\n", "k_0(k_0-1)}\\sum_{i<j}(\\theta_i-\\theta_j) (\\theta_i-\\theta_j)^T"). projMethod="DMS" indicates that we project data to the 2-dimensional space spanned by the first two eigenvectors of the between cluster distance matrix c("B=sumi=2k0sumj=1i1\nB=\\sum_{i=2}^{k_0}\\sum_{j=1}^{i-1}\n", "ninj(thetaithetaj)(thetaithetaj)Tn_i n_j(\\theta_i-\\theta_j)(\\theta_i-\\theta_j)^T"). DMS method is proposed by Dhillon et al. (2002).
  • xlim: Range of X axis.
  • ylim: Range of Y axis.
  • xlab: X axis label.
  • ylab: Y axis label.
  • title: Title of the plot.
  • font: An integer which specifies which font to use for text (see par).
  • font.lab: The font to be used for x and y labels (see par).
  • cex: A numerical value giving the amount by which plotting text and symbols should be scaled relative to the default (see par).
  • cex.lab: The magnification to be used for x and y labels relative to the current setting of 'cex' (see par).

Returns

  • B: Between cluster distance matrix measuring the between cluster variation.

  • Q: Columns of Q are eigenvectors of the matrix B.

  • proj: Projected clusters in the 2-D space spanned by the first 2 columns of the matrix Q.

References

Dhillon I. S., Modha, D. S. and Spangler, W. S. (2002) Class visualization of high-dimensional data with applications. computational Statistics and Data Analysis, 41 , 59--90.

Qiu, W.-L. and Joe, H. (2006) Separation Index and Partial Membership for Clustering. Computational Statistics and Data Analysis, 50 , 585--603.

Author(s)

Weiliang Qiu weiliang.qiu@gmail.com

Harry Joe harry@stat.ubc.ca

See Also

plot1DProjection

plot2DProjection

Examples

n1 <- 50 mu1 <- c(0, 0) Sigma1 <- matrix(c(2, 1, 1, 5), 2, 2) n2 <- 100 mu2 <- c(10, 0) Sigma2 <- matrix(c(5, -1, -1, 2), 2, 2) n3 <- 30 mu3 <- c(10, 10) Sigma3 <- matrix(c(3, 1.5, 1.5, 1), 2, 2) n4 <- 10 mu4 <- c(0, 0) Sigma4 <- 50*diag(2) library(MASS) set.seed(1234) y1 <- mvrnorm(n1, mu1, Sigma1) y2 <- mvrnorm(n2, mu2, Sigma2) y3 <- mvrnorm(n3, mu3, Sigma3) y4 <- mvrnorm(n4, mu4, Sigma4) y <- rbind(y1, y2, y3, y4) cl <- rep(c(1:3, 0), c(n1, n2, n3, n4)) par(mfrow=c(2,1)) viewClusters(y = y, cl = cl) viewClusters(y = y, cl = cl, projMethod = "DMS")
  • Maintainer: Weiliang Qiu
  • License: GPL (>= 2)
  • Last published: 2023-08-16

Useful links