onefold.chooser function

one fold cross-validation for specifying threshold r

one fold cross-validation for specifying threshold r

onefold.chooser( data.train.k, data.test.k, jj, grid.r, nb.clust, nnodes, sizeblock, method.select, B, modelNames, K, path.outfile, nbvarused )

Arguments

  • data.train.k: a train set
  • data.test.k: a test set
  • jj: name of the outcome used for variable selection
  • grid.r: a grid for the tuning parameter r
  • nb.clust: number of clusters
  • sizeblock: number of sampled variables at each iteration
  • method.select: variable selection method
  • B: number of iterations
  • modelNames: mixture model specification for imputation of subsets
  • K: number of fold
  • path.outfile: a path for message redirection
  • nbvarused: a maximal number of selected variables (can be required with a large number of variables)
  • Maintainer: Vincent Audigier
  • License: GPL-2 | GPL-3
  • Last published: 2025-02-24

Useful links