clusterability function

clusterability: a package to perform tests of clusterability

clusterability: a package to perform tests of clusterability

The clusterabilitytest function can test for clusterability of a dataset, and the print function to display output in the console. Below we include code to use with the provided example datasets. Please see the clusterabilitytest function for documentation on available parameters. package

Examples

# Normals1 data(normals1) normals1 <- normals1[,-3] norm1_dippca <- clusterabilitytest(normals1, "dip") norm1_dipdist <- clusterabilitytest(normals1, "dip", distance_standardize = "NONE", reduction = "distance") norm1_silvpca <- clusterabilitytest(normals1, "silverman", s_setseed = 123) norm1_silvdist <- clusterabilitytest(normals1, "silverman", distance_standardize = "NONE", reduction = "distance", s_setseed = 123) print(norm1_dippca) print(norm1_dipdist) print(norm1_silvpca) print(norm1_silvdist) # Normals2 data(normals2) normals2 <- normals2[,-3] norm2_dippca <- clusterabilitytest(normals2, "dip") norm2_dipdist <- clusterabilitytest(normals2, "dip", reduction = "distance", distance_standardize = "NONE") norm2_silvpca <- clusterabilitytest(normals2, "silverman", s_setseed = 123) norm2_silvdist <- clusterabilitytest(normals2, "silverman", reduction = "distance", distance_standardize = "NONE", s_setseed = 123) print(norm2_dippca) print(norm2_dipdist) print(norm2_silvpca) print(norm2_silvdist) # Normals3 data(normals3) normals3 <- normals3[,-3] norm3_dippca <- clusterabilitytest(normals3, "dip") norm3_dipdist <- clusterabilitytest(normals3, "dip", reduction = "distance", distance_standardize = "NONE") norm3_silvpca <- clusterabilitytest(normals3, "silverman", s_setseed = 123) norm3_silvdist <- clusterabilitytest(normals3, "silverman", reduction = "distance", distance_standardize = "NONE", s_setseed = 123) print(norm3_dippca) print(norm3_dipdist) print(norm3_silvpca) print(norm3_silvdist) # Normals4 data(normals4) normals4 <- normals4[,-4] norm4_dippca <- clusterabilitytest(normals4, "dip") norm4_dipdist <- clusterabilitytest(normals4, "dip", reduction = "distance", distance_standardize = "NONE") norm4_silvpca <- clusterabilitytest(normals4, "silverman", s_setseed = 123) norm4_silvdist <- clusterabilitytest(normals4, "silverman", reduction = "distance", distance_standardize = "NONE", s_setseed = 123) print(norm4_dippca) print(norm4_dipdist) print(norm4_silvpca) print(norm4_silvdist) # Normals5 data(normals5) normals5 <- normals5[,-4] norm5_dippca <- clusterabilitytest(normals5, "dip") norm5_dipdist <- clusterabilitytest(normals5, "dip", reduction = "distance", distance_standardize = "NONE") norm5_silvpca <- clusterabilitytest(normals5, "silverman", s_setseed = 123) norm5_silvdist <- clusterabilitytest(normals5, "silverman", reduction = "distance", distance_standardize = "NONE", s_setseed = 123) print(norm5_dippca) print(norm5_dipdist) print(norm5_silvpca) print(norm5_silvdist) # iris data(iris) newiris <- iris[,c(1:4)] iris_dippca <- clusterabilitytest(newiris, "dip") iris_dipdist <- clusterabilitytest(newiris, "dip", reduction = "distance", distance_standardize = "NONE") iris_silvpca <- clusterabilitytest(newiris, "silverman", s_setseed = 123) iris_silvdist <- clusterabilitytest(newiris, "silverman", reduction = "distance", distance_standardize = "NONE", s_setseed = 123) print(iris_dippca) print(iris_dipdist) print(iris_silvpca) print(iris_silvdist) # cars data(cars) cars_dippca <- clusterabilitytest(cars, "dip") cars_dipdist <- clusterabilitytest(cars, "dip", reduction = "distance", distance_standardize = "NONE") cars_silvpca <- clusterabilitytest(cars, "silverman", s_setseed = 123) cars_silvdist <- clusterabilitytest(cars, "silverman", reduction = "distance", distance_standardize = "NONE", s_setseed = 123) print(cars_dippca) print(cars_dipdist) print(cars_silvpca) print(cars_silvdist)
  • Maintainer: Zachariah Neville
  • License: GPL-2
  • Last published: 2020-03-04

Useful links