clusterability: a package to perform tests of clusterability
The clusterabilitytest
function can test for clusterability of a dataset, and the print
function to display output in the console. Below we include code to use with the provided example datasets. Please see the clusterabilitytest
function for documentation on available parameters.
package
# Normals1 data(normals1) normals1 <- normals1[,-3] norm1_dippca <- clusterabilitytest(normals1, "dip") norm1_dipdist <- clusterabilitytest(normals1, "dip", distance_standardize = "NONE", reduction = "distance") norm1_silvpca <- clusterabilitytest(normals1, "silverman", s_setseed = 123) norm1_silvdist <- clusterabilitytest(normals1, "silverman", distance_standardize = "NONE", reduction = "distance", s_setseed = 123) print(norm1_dippca) print(norm1_dipdist) print(norm1_silvpca) print(norm1_silvdist) # Normals2 data(normals2) normals2 <- normals2[,-3] norm2_dippca <- clusterabilitytest(normals2, "dip") norm2_dipdist <- clusterabilitytest(normals2, "dip", reduction = "distance", distance_standardize = "NONE") norm2_silvpca <- clusterabilitytest(normals2, "silverman", s_setseed = 123) norm2_silvdist <- clusterabilitytest(normals2, "silverman", reduction = "distance", distance_standardize = "NONE", s_setseed = 123) print(norm2_dippca) print(norm2_dipdist) print(norm2_silvpca) print(norm2_silvdist) # Normals3 data(normals3) normals3 <- normals3[,-3] norm3_dippca <- clusterabilitytest(normals3, "dip") norm3_dipdist <- clusterabilitytest(normals3, "dip", reduction = "distance", distance_standardize = "NONE") norm3_silvpca <- clusterabilitytest(normals3, "silverman", s_setseed = 123) norm3_silvdist <- clusterabilitytest(normals3, "silverman", reduction = "distance", distance_standardize = "NONE", s_setseed = 123) print(norm3_dippca) print(norm3_dipdist) print(norm3_silvpca) print(norm3_silvdist) # Normals4 data(normals4) normals4 <- normals4[,-4] norm4_dippca <- clusterabilitytest(normals4, "dip") norm4_dipdist <- clusterabilitytest(normals4, "dip", reduction = "distance", distance_standardize = "NONE") norm4_silvpca <- clusterabilitytest(normals4, "silverman", s_setseed = 123) norm4_silvdist <- clusterabilitytest(normals4, "silverman", reduction = "distance", distance_standardize = "NONE", s_setseed = 123) print(norm4_dippca) print(norm4_dipdist) print(norm4_silvpca) print(norm4_silvdist) # Normals5 data(normals5) normals5 <- normals5[,-4] norm5_dippca <- clusterabilitytest(normals5, "dip") norm5_dipdist <- clusterabilitytest(normals5, "dip", reduction = "distance", distance_standardize = "NONE") norm5_silvpca <- clusterabilitytest(normals5, "silverman", s_setseed = 123) norm5_silvdist <- clusterabilitytest(normals5, "silverman", reduction = "distance", distance_standardize = "NONE", s_setseed = 123) print(norm5_dippca) print(norm5_dipdist) print(norm5_silvpca) print(norm5_silvdist) # iris data(iris) newiris <- iris[,c(1:4)] iris_dippca <- clusterabilitytest(newiris, "dip") iris_dipdist <- clusterabilitytest(newiris, "dip", reduction = "distance", distance_standardize = "NONE") iris_silvpca <- clusterabilitytest(newiris, "silverman", s_setseed = 123) iris_silvdist <- clusterabilitytest(newiris, "silverman", reduction = "distance", distance_standardize = "NONE", s_setseed = 123) print(iris_dippca) print(iris_dipdist) print(iris_silvpca) print(iris_silvdist) # cars data(cars) cars_dippca <- clusterabilitytest(cars, "dip") cars_dipdist <- clusterabilitytest(cars, "dip", reduction = "distance", distance_standardize = "NONE") cars_silvpca <- clusterabilitytest(cars, "silverman", s_setseed = 123) cars_silvdist <- clusterabilitytest(cars, "silverman", reduction = "distance", distance_standardize = "NONE", s_setseed = 123) print(cars_dippca) print(cars_dipdist) print(cars_silvpca) print(cars_silvdist)
Useful links