Variable Selection for Gaussian Model-Based Clustering
Variable selection for Gaussian model-based clustering as implemented in the 'mclust' package. The methodology allows to find the (locally) optimal subset of variables in a data set that have group/cluster information. A greedy or headlong search can be used, either in a forward-backward or backward-forward direction, with or without sub-sampling at the hierarchical clustering stage for starting 'mclust' models. By default the algorithm uses a sequential search, but parallelisation is also available.