Estimation of the conditional distribution function of the response, given the covariate under random censoring.
Estimation of the conditional distribution function of the response, given the covariate under random censoring.
Computes the conditional survival probability P(T > y|Z = z)
Beran( time, status, covariate, delta, x, y, kernel ="gaussian", bw, lower.tail =FALSE)
Arguments
time: The survival time of the process.
status: Censoring indicator of the total time of the process; 0 if the total time is censored and 1 otherwise.
covariate: Covariate values for obtaining estimates for the conditional probabilities.
delta: Censoring indicator of the covariate.
x: The first time (or covariate value) for obtaining estimates for the conditional probabilities. If missing, 0 will be used.
y: The total time for obtaining estimates for the conditional probabilities.
kernel: A character string specifying the desired kernel. See details below for possible options. Defaults to "gaussian" where the gaussian density kernel will be used.
bw: A single numeric value to compute a kernel density bandwidth.
lower.tail: logical; if FALSE (default), probabilities are c("P(T>y∣Z=\n", "z)") otherwise, P(T<=y∣Z=z).
Details
Possible options for argument window are "gaussian", "epanechnikov", "tricube", "boxcar", "triangular", "quartic" or "cosine".
Examples
obj <- with(colonCS, survCS(time1, event1, Stime, event))#P(T>y|age=45)library(KernSmooth)h <- dpik(colonCS$age)Beran(time = obj$Stime, status = obj$event, covariate = colonCS$age,x =45, y =730, bw = h)#P(T<=y|age=45)Beran(time = obj$Stime, status = obj$event, covariate = colonCS$age,x =45, y =730, bw = h, lower.tail =TRUE)
References
R. Beran. Nonparametric regression with randomly censored survival data. Technical report, University of California, Berkeley, 1981.