CPObsFuzziness function

Computes observed fuzziness, which is defined as the sum of all p-values for the incorrect class labels.

Computes observed fuzziness, which is defined as the sum of all p-values for the incorrect class labels.

CPObsFuzziness(matPValues, testLabels)

Arguments

  • matPValues: Matrix of p-values
  • testLabels: True labels for the test-set

Returns

The observed fuzziness

See Also

CPCalibrationPlot, CPEfficiency, CPErrorRate, CPValidity.

Examples

## load the library library(mlbench) #library(caret) library(conformalClassification) ## load the DNA dataset data(DNA) originalData <- DNA ## make sure first column is always the label and class labels are always 1, 2, ... nrAttr = ncol(originalData) #no of attributes tempColumn = originalData[, 1] originalData[, 1] = originalData[, nrAttr] originalData[, nrAttr] = tempColumn originalData[, 1] = as.factor(originalData[, 1]) originalData[, 1] = as.numeric(originalData[, 1]) ## partition the data into training and test set #result = createDataPartition(originalData[, 1], p = 0.8, list = FALSE) size = nrow(originalData) result = sample(1:size, 0.8*size) trainingSet = originalData[result, ] testSet = originalData[-result, ] ##ICP classification pValues = ICPClassification(trainingSet, testSet) testLabels = testSet[,1] CPObsFuzziness(pValues, testLabels)
  • Maintainer: Niharika Gauraha
  • License: GPL-3
  • Last published: 2017-12-22

Useful links