CPValidity function

Computes the deviation from exact validity as the Euclidean norm of the difference of the observed error and the expected error

Computes the deviation from exact validity as the Euclidean norm of the difference of the observed error and the expected error

CPValidity(matPValues = NULL, testLabels = NULL)

Arguments

  • matPValues: Matrix of p-values
  • testLabels: True labels for the test-set

Returns

The deviation from exact validity

See Also

CPCalibrationPlot, CPEfficiency, CPErrorRate, CPObsFuzziness.

Examples

## load the library library(mlbench) #library(caret) library(conformalClassification) ## load the DNA dataset data(DNA) originalData <- DNA ## make sure first column is always the label and class labels are always 1, 2, ... nrAttr = ncol(originalData) #no of attributes tempColumn = originalData[, 1] originalData[, 1] = originalData[, nrAttr] originalData[, nrAttr] = tempColumn originalData[, 1] = as.factor(originalData[, 1]) originalData[, 1] = as.numeric(originalData[, 1]) ## partition the data into training and test set #result = createDataPartition(originalData[, 1], p = 0.8, list = FALSE) size = nrow(originalData) result = sample(1:size, 0.8*size) trainingSet = originalData[result, ] testSet = originalData[-result, ] ##ICP classification pValues = ICPClassification(trainingSet, testSet) testLabels = testSet[,1] CPValidity(pValues, testLabels)
  • Maintainer: Niharika Gauraha
  • License: GPL-3
  • Last published: 2017-12-22

Useful links