ICPClassification function

Class-conditional Inductive conformal classifier for multi-class problems

Class-conditional Inductive conformal classifier for multi-class problems

ICPClassification(trainingSet, testSet, ratioTrain = 0.7, method = "rf", nrTrees = 100)

Arguments

  • trainingSet: Training set
  • testSet: Test set
  • ratioTrain: The ratio for proper training set
  • method: Method for modeling
  • nrTrees: Number of trees for RF

Returns

The p-values

See Also

TCPClassification, parTCPClassification.

Examples

## load the library library(mlbench) #library(caret) library(conformalClassification) ## load the DNA dataset data(DNA) originalData <- DNA ## make sure first column is always the label and class labels are always 1, 2, ... nrAttr = ncol(originalData) #no of attributes tempColumn = originalData[, 1] originalData[, 1] = originalData[, nrAttr] originalData[, nrAttr] = tempColumn originalData[, 1] = as.factor(originalData[, 1]) originalData[, 1] = as.numeric(originalData[, 1]) ## partition the data into training and test set #result = createDataPartition(originalData[, 1], p = 0.8, list = FALSE) size = nrow(originalData) result = sample(1:size, 0.8*size) trainingSet = originalData[result, ] testSet = originalData[-result, ] ##ICP classification pValues = ICPClassification(trainingSet, testSet) #perfVlaues = pValues2PerfMetrics(pValues, testSet) #print(perfVlaues) #CPCalibrationPlot(pValues, testSet, "blue")
  • Maintainer: Niharika Gauraha
  • License: GPL-3
  • Last published: 2017-12-22

Useful links