## load the librarylibrary(mlbench)#library(caret)library(conformalClassification)## load the DNA datasetdata(DNA)originalData <- DNA
## make sure first column is always the label and class labels are always 1, 2, ...nrAttr = ncol(originalData)#no of attributestempColumn = originalData[,1]originalData[,1]= originalData[, nrAttr]originalData[, nrAttr]= tempColumn
originalData[,1]= as.factor(originalData[,1])originalData[,1]= as.numeric(originalData[,1])## partition the data into training and test set#result = createDataPartition(originalData[, 1], p = 0.8, list = FALSE)size = nrow(originalData)result = sample(1:size,0.8*size)trainingSet = originalData[result,]testSet = originalData[-result,]##ICP classificationpValues = ICPClassification(trainingSet, testSet)#perfVlaues = pValues2PerfMetrics(pValues, testSet)#print(perfVlaues)#CPCalibrationPlot(pValues, testSet, "blue")