## load the library#library(mlbench)#library(caret)#library(conformalClassification)## load the DNA dataset#data(DNA)#originalData <- DNA## make sure first column is always the label and class labels are always 1, 2, ...#nrAttr = ncol(originalData) #no of attributes#tempColumn = originalData[, 1]#originalData[, 1] = originalData[, nrAttr]#originalData[, nrAttr] = tempColumn#originalData[, 1] = as.factor(originalData[, 1])#originalData[, 1] = as.numeric(originalData[, 1])## partition the data into training and test set#result = createDataPartition(originalData[, 1], p = 0.8, list = FALSE)#trainingSet = originalData[result, ]#testSet = originalData[-result, ]##reduce the size of the training set, because TCP is slow#result = createDataPartition(trainingSet[, 1], p=0.8, list=FALSE)#trainingSet = trainingSet[-result, ]##TCP classification#pValues = TCPClassification(trainingSet, testSet)#perfVlaues = pValues2PerfMetrics(pValues, testSet)#print(perfVlaues)#CPCalibrationPlot(pValues, testSet, "blue")#not run