parTCPClassification function

Class-conditional transductive conformal classifier for multi-class problems, paralled computations

Class-conditional transductive conformal classifier for multi-class problems, paralled computations

parTCPClassification(trainSet, testSet, method = "rf", nrTrees = 100, nrClusters = 12)

Arguments

  • testSet: Test set
  • method: Method for modeling
  • nrTrees: Number of trees for RF
  • nrClusters: Number of clusters
  • trainSet: Training set

Returns

The p-values

See Also

TCPClassification. ICPClassification.

Examples

## load the library #library(mlbench) #library(caret) #library(conformalClassification) ## load the DNA dataset #data(DNA) #originalData <- DNA ## make sure first column is always the label and class labels are always 1, 2, ... #nrAttr = ncol(originalData) #no of attributes #tempColumn = originalData[, 1] #originalData[, 1] = originalData[, nrAttr] #originalData[, nrAttr] = tempColumn #originalData[, 1] = as.factor(originalData[, 1]) #originalData[, 1] = as.numeric(originalData[, 1]) ## partition the data into training and test set #result = createDataPartition(originalData[, 1], p = 0.8, list = FALSE) #trainingSet = originalData[result, ] #testSet = originalData[-result, ] ##ICP classification #pValues = parTCPClassification(trainingSet, testSet) #perfVlaues = pValues2PerfMetrics(pValues, testSet) #print(perfVlaues) #CPCalibrationPlot(pValues, testSet, "blue") #not run
  • Maintainer: Niharika Gauraha
  • License: GPL-3
  • Last published: 2017-12-22

Useful links