Algorithms for Routing and Solving the Traffic Assignment Problem
Algorithms for solving the Traffic Assignment Problem (TAP).
Contraction hierarchies algorithm
Reduce the number of edges by removing non-intersection nodes, duplica...
Given an origin-destination matrix, compute All-or-Nothing assignment.
Return the nodes that can be reached in a detour time set around the s...
Compute all shortest distance between origin and destination nodes.
Compute shortest distance between origin and destination nodes.
Compute isochrones/isodistances from nodes.
Compute all shortest paths between origin and destination nodes.
Compute shortest path between origin and destination nodes.
Construct graph
Convert cppRouting graph to data.frame
Calculation of distances, shortest paths and isochrones on weighted graphs using several variants of Dijkstra algorithm. Proposed algorithms are unidirectional Dijkstra (Dijkstra, E. W. (1959) <doi:10.1007/BF01386390>), bidirectional Dijkstra (Goldberg, Andrew & Fonseca F. Werneck, Renato (2005) <https://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf>), A* search (P. E. Hart, N. J. Nilsson et B. Raphael (1968) <doi:10.1109/TSSC.1968.300136>), new bidirectional A* (Pijls & Post (2009) <https://repub.eur.nl/pub/16100/ei2009-10.pdf>), Contraction hierarchies (R. Geisberger, P. Sanders, D. Schultes and D. Delling (2008) <doi:10.1007/978-3-540-68552-4_24>), PHAST (D. Delling, A.Goldberg, A. Nowatzyk, R. Werneck (2011) <doi:10.1016/j.jpdc.2012.02.007>). Algorithms for solving the traffic assignment problem are All-or-Nothing assignment, Method of Successive Averages, Frank-Wolfe algorithm (M. Fukushima (1984) <doi:10.1016/0191-2615(84)90029-8>), Conjugate and Bi-Conjugate Frank-Wolfe algorithms (M. Mitradjieva, P. O. Lindberg (2012) <doi:10.1287/trsc.1120.0409>), Algorithm-B (R. B. Dial (2006) <doi:10.1016/j.trb.2006.02.008>).